in

Skin microbiome correlates with bioclimate and Batrachochytrium dendrobatidis infection intensity in Brazil’s Atlantic Forest treefrogs

  • 1.

    Belden, L. K. et al. Panamanian frog species host unique skin bacterial communities. Front. Microbiol. 6, 1171 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Jani, A. J. & Briggs, C. J. Host and aquatic environment shape the amphibian skin microbiome but effects on downstream resistance to the pathogen Batrachochytrium dendrobatidis are variable. Front. Microbiol. 9, 487 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 110, 3229–3236 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Woodhams, D. C., Bletz, M., Kueneman, J. & McKenzie, V. Managing amphibian disease with skin microbiota. Trends Microbiol. 24, 161–164 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Flechas, S. V. et al. Current and predicted distribution of the pathogenic fungus Batrachochytrium dendrobatidis in Colombia, a hotspot of amphibian biodiversity. Biotropica 49, 685–694 (2017).

    Article  Google Scholar 

  • 6.

    Rollins-Smith, L. A. & Conlon, J. M. Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Dev. Comp. Immunol. 29, 589–598 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Jiménez, R. R. & Sommer, S. The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation. Biodiv. Conserv. 26, 763–786 (2017).

    Article  Google Scholar 

  • 8.

    Bletz, M. C. et al. Host ecology rather than host phylogeny drives amphibian skin microbial community structure in the biodiversity hotspot of Madagascar. Front. Microbiol. 8, 1530 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Romano-Bertrand, S., Licznar-Fajardo, P., Parer, S. & Jumas-Bilak, E. Impact de l’environnement sur les microbiotes: focus sur l’hospitalisation et les microbiotes cutanés et chirurgicaux. Revue Francophone des Laboratoires 469, 75–82 (2015).

    Article  Google Scholar 

  • 10.

    Woodhams, D. C. et al. Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol. 21, 23 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Cheng, Y. et al. The Tasmanian devil microbiome—implications for conservation and management. Microbiome 3, 1–11 (2015).

    Article  Google Scholar 

  • 12.

    Lemieux-Labonté, V., Tromas, N., Shapiro, B. J. & Lapointe, F. J. Environment and host species shape the skin microbiome of captive neotropical bats. PeerJ 4, e2430 (2016).

  • 13.

    Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Daskin, J. H., Bell, S. C., Schwarzkopf, L. & Alford, R. A. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians–implications for disease management and patterns of decline. PLoS ONE 9, e100378 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 15.

    Duellman, W. E. & Trueb, L. Integumentary, Sensory, and Visceral Systems. Biology of Amphibians (McGraw-Hill, New York, 1986).

    Google Scholar 

  • 16.

    Bataille, A. et al. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation. Proc. R. Soc. B Biol. Sci. 282, 20143127 (2015).

    Article  Google Scholar 

  • 17.

    Longo, A. V., Savage, A. E., Hewson, I. & Zamudio, K. R. Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians. R. Soc. Open Sci. 2, 140377 (2015).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 18.

    Kueneman, J. G. et al. The amphibian skin-associated microbiome across species, space and life history stages. Mol. Ecol. 23, 1238–1250 (2014).

    PubMed  Article  Google Scholar 

  • 19.

    Kueneman, J. G. et al. Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat. Ecol. Evol. 3, 381–389 (2019).

    PubMed  Article  Google Scholar 

  • 20.

    Rollins-Smith, L. A., Ramsey, J. P., Pask, J. D., Reinert, L. K. & Woodhams, D. C. Amphibian immune defenses against chytridiomycosis: impacts of changing environments. Integr. Comp. Biol. 51, 552–562 (2011).

  • 21.

    Sanchez, E. et al. Cutaneous bacterial communities of a poisonous salamander: a perspective from life stages, body parts and environmental conditions. Microb. Ecol. 73, 455–465 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Antwis, R. E. et al. Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas). PLoS ONE 9, e85563 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 23.

    Jani, A. J. & Briggs, C. J. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc. Natl. Acad. Sci. USA 111, E5049–E5058 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 24.

    Medina, D. et al. Variation in metabolite profiles of amphibian skin bacterial communities across elevations in the Neotropics. Microb. Ecol. 74, 227–238 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Loudon, A. H. et al. Vertebrate hosts as islands: dynamics of selection, immigration, loss, persistence, and potential function of bacteria on salamander skin. Front. Microbiol. 7, 333 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Bates, K. A. et al. Amphibian chytridiomycosis outbreak dynamics are linked with host skin bacterial community structure. Nat. Commun. 9, 1–11 (2018).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Woodhams, D. C. et al. Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLoS ONE 9, e96375 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 28.

    Costa, S., Lopes, I., Proença, D. N., Ribeiro, R. & Morais, P. V. Diversity of cutaneous microbiome of Pelophylax perezi populations inhabiting different environments. Sci. Total Environ. 572, 995–1004 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 29.

    Sabino-Pinto, J. et al. Composition of the cutaneous bacterial community in Japanese amphibians: effects of captivity, host species, and body region. Microb. Ecol. 72, 460–469 (2016).

    PubMed  Article  Google Scholar 

  • 30.

    Kueneman, J. G. et al. Inhibitory bacteria reduce fungi on early life stages of endangered Colorado boreal toads (Anaxyrus boreas). ISME J. 10, 934–944 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Becker, C. G., Longo, A. V., Haddad, C. F. B. & Zamudio, K. R. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc. R. Soc. B Biol. Sci. 284, 20170582 (2017).

    Article  Google Scholar 

  • 32.

    Belasen, A. M., Bletz, M. C., Leite, D. D. S., Toledo, L. F. & James, T. Y. Long-term habitat fragmentation is associated with reduced MHC IIB diversity and increased infections in amphibian hosts. Front. Ecol. Evol. 6, 236 (2019).

    Article  Google Scholar 

  • 33.

    Greenspan, S. E. et al. Arthropod–bacteria interactions influence assembly of aquatic host microbiome and pathogen defense. Proc. R. Soc. B 286, 20190924 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Becker, C. G. et al. Low-load pathogen spillover predicts shifts in skin microbiome and survival of a terrestrial-breeding amphibian. Proc. Roy. Soc. B 286, 20191114 (2019).

    Article  Google Scholar 

  • 35.

    Christian, K., Weitzman, C., Rose, A., Kaestli, M. & Gibb, K. Ecological patterns in the skin microbiota of frogs from tropical Australia. Ecol. Evol. 8, 10510–10519 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    McKenzie, V. J., Bowers, R. M., Fierer, N., Knight, R. & Lauber, C. L. Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J. 6, 588–596 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Walke, J. B. et al. Amphibian skin may select for rare environmental microbes. ISME J. 8, 2207–2217 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Varela, B. J., Lesbarrères, D., Ibáñez, R. & Green, D. M. Environmental and host effects on skin bacterial community composition in Panamanian frogs. Front. Microbiol. 9, 298 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Loudon, A. H. et al. Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J. 8, 830–840 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Toledo, L. F. & Batista, R. F. Integrative study of Brazilian anurans: geographic distribution, size, environment, taxonomy, and conservation. Biotropica 44, 785–792 (2012).

    Article  Google Scholar 

  • 41.

    Haddad, C. F. B. et al. Guide to the Amphibians of the Antic Forest: Diversity and Biology (Anolisbooks, São Paulo, 2013).

    Google Scholar 

  • 42.

    Toledo, L. F., Becker, C. G., Haddad, C. F. & Zamudio, K. R. Rarity as an indicator of endangerment in Neotropical frogs. Biol. Conserv. 179, 54–62 (2014).

    Article  Google Scholar 

  • 43.

    Sasso, T. et al. Environmental DNA characterization of amphibian communities in the Brazilian Atlantic forest: potential application for conservation of a rich and threatened fauna. Biol. Conserv. 215, 225–232 (2017).

    Article  Google Scholar 

  • 44.

    Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J. & Hirota, M. M. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153 (2009).

    Article  Google Scholar 

  • 45.

    Ledru, M. P., Montade, V., Blanchard, G. & Hély, C. Long-term spatial changes in the distribution of the Brazilian Atlantic Forest. Biotropica 48, 159–169 (2016).

    Article  Google Scholar 

  • 46.

    Joly, C. A., Metzger, J. P. & Tabarelli, M. Experiences from the Brazilian Atlantic F orest: ecological findings and conservation initiatives. New Phytol. 204, 459–473 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Eterovick, P. C. et al. Amphibian declines in Brazil: an overview 1. Biotropica 37, 166–179 (2005).

    Article  Google Scholar 

  • 49.

    Becker, C. G., Fonseca, C. R., Haddad, C. F. B., Batista, R. F. & Prado, P. I. Habitat split and the global decline of amphibians. Science 318, 1775–1777 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Both, C. et al. Widespread occurrence of the American bullfrog, Lithobates catesbeianus (Shaw, 1802) (Anura: Ranidae), Brazil. S. Am. J. Herpetol. 6, 127–134 (2011).

    Article  Google Scholar 

  • 51.

    Carvalho, T., Becker, C. G. & Toledo, L. F. Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis. Proc. R. Soc. B Biol. Sci. 284, 20162254 (2017).

    Article  Google Scholar 

  • 52.

    Haddad, C. F., Toledo, L. F. & Prado, C. P. Anfíbios da Mata Atlântica: guia dos anfíbios anuros da Mata Atlântica. Editora Neotropica (2008).

  • 53.

    Carnaval, A. C. O. Q., Toledo, L. F., Haddad, C. F. B. & Britto, F. B. (2005). Chytrid fungus infects high-altitude stream-dwelling Hylodes magalhaesi (Leptodactylidae) in the Brazilian Atlantic rainforest. Froglog 70, 3–4 (2005).

  • 54.

    Carnaval, A. C. O., Puschendorf, R., Peixoto, O. L., Verdade, V. K. & Rodrigues, M. T. Amphibian chytrid fungus broadly distributed in the Brazilian Atlantic Rain Forest. EcoHealth 3, 41–48 (2006).

    Article  Google Scholar 

  • 55.

    Toledo, L. F., Britto, F. B., Araújo, O. G., Giasson, L. M. & Haddad, C. F. The occurrence of Batrachochytrium dendrobatidis in Brazil and the inclusion of 17 new cases of infection. S. Am. J. Herpetol. 1, 185–191 (2006).

    Article  Google Scholar 

  • 56.

    Toledo, L. F., Haddad, C. F. B., Carnaval, A. C. O. Q. & Britto, F. B. A Brazilian anuran (Hylodes magalhaesi: Leptodactylidae) infected by Batrachochytrium dendrobatidis: a conservation concern. Amphib. Reptile Conserv. 4, 17–21 (2006).

    Google Scholar 

  • 57.

    de Oliveira Ramalho, A. C., De Paula, C. D., Catao-Dias, J. L., Vilarinho, B. & Brandao, R. A. First record of Batrachochytrium dendrobatidis in two endemic Cerrado hylids, Bokermannohyla pseudopseudis and Bokermannohyla sapiranga, with comments on chytridiomycosis spreading in Brazil. North West. J. Zool. 9, 145–150 (2013).

    Google Scholar 

  • 58.

    Rodriguez, D., Becker, C. G., Pupin, N. C., Haddad, C. F. B. & Zamudio, K. R. Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic F orest of B razil. Mol. Ecol. 23, 774–787 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Preuss, J. F., Lambertini, C., da Silva Leite, D., Toledo, L. F. & Lucas, E. M. Batrachochytrium dendrobatidis in near threatened and endangered amphibians in the southern Brazilian Atlantic Forest. North West. J. Zool 11, 360–362 (2015).

    Google Scholar 

  • 60.

    Preuss, J. F., Lambertini, C., Leite, D. D. S., Toledo, L. F. & Lucas, E. M. Crossing the threshold: an amphibian assemblage highly infected with Batrachochytrium dendrobatidis in the southern Brazilian Atlantic forest. Stud. Neotrop. Fauna E 51, 68–77 (2016).

    Article  Google Scholar 

  • 61.

    Valencia-Aguilar, A., Toledo, L. F., Vital, M. V. & Mott, T. Seasonality, environmental factors, and host behavior linked to disease risk in stream-dwelling tadpoles. Herpetologica 72, 98–106 (2016).

    Article  Google Scholar 

  • 62.

    Becker, C. G., Rodriguez, D., Lambertini, C., Toledo, L. F. & Haddad, C. F. Historical dynamics of Batrachochytrium dendrobatidis in Amazonia. Ecography 39, 954–960 (2016).

    Article  Google Scholar 

  • 63.

    Skerratt, L. F. et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4, 125–134 (2007).

    Article  Google Scholar 

  • 64.

    Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 65.

    Bataille, A., Lee-Cruz, L., Tripathi, B. & Waldman, B. Skin bacterial community reorganization following metamorphosis of the fire-bellied toad (Bombina orientalis). Microb. Ecol. 75, 505–514 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 66.

    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 67.

    Scheele, B. C. et al. Response to Comment on “Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity”. Science 367, eaay2905 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 68.

    Woodhams, D. C. et al. Antifungal isolates database of amphibian skin-associated bacteria and function against emerging fungal pathogens: ecological archives E096–059. Ecology 96, 595 (2015).

    Article  Google Scholar 

  • 69.

    Harris, R. N. et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3, 818–824 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 70.

    Muletz-Wolz, C. R. et al. Inhibition of fungal pathogens across genotypes and temperatures by amphibian skin bacteria. Front. Microbiol. 8, 1551 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Niederle, M. V. et al. Skin-associated lactic acid bacteria from North American bullfrogs as potential control agents of Batrachochytrium dendrobatidis. PLoS ONE 14, e0223020 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    Becker, M. H. et al. Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus. Proc. R. Soc. B Biol. Sci. 282, 20142881 (2015).

    Article  CAS  Google Scholar 

  • 73.

    Rebollar, E. A. et al. Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis. ISME J. 10, 1682–1695 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 74.

    Longo, A. V. & Zamudio, K. R. Environmental fluctuations and host skin bacteria shift survival advantage between frogs and their fungal pathogen. ISME 11, 349–361 (2017).

    Article  Google Scholar 

  • 75.

    Longo, A. V. & Zamudio, K. R. Temperature variation, bacterial diversity and fungal infection dynamics in the amphibian skin. Mol. Ecol. 26, 4787–4797 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    Lambertini, C. et al. Biotic and abiotic determinants of Batrachochytrium dendrobatidis infections in amphibians of the Brazilian Atlantic Forest. Fung. Ecol. 49, 100995 (2021).

    Article  Google Scholar 

  • 77.

    Becker, C. G. et al. Variation in phenotype and virulence among enzootic and panzootic amphibian chytrid lineages. Fung. Ecol. 26, 45–50 (2017).

    Article  Google Scholar 

  • 78.

    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 79.

    Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. USA 104, 11436–11440 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 80.

    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 81.

    Boyle, A. H. D. et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis. Aquat. Organ. 73, 175–192 (2007).

    PubMed  Article  Google Scholar 

  • 82.

    Boyle, D. G., Boyle, D. B., Olsen, V., Morgan, J. A. T. & Hyatt, A. D. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Organ. 60, 141–148 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Lambertini, C., Rodriguez, D., Brito, F. B., Leite, D. S. & Toledo, L. F. Diagnóstico do fungo Quitrídio: Batrachochytrium dendrobatidis. Herpetol. Bras. 2, 12–17 (2013).

    Google Scholar 

  • 84.

    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Envrion. Microbiol. 79, 5112–5120 (2013).

    CAS  Article  Google Scholar 

  • 85.

    Bletz, M. C. et al. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat. Commun. 7, 13699 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 86.

    Kriger, K. M. & Hero, J. M. The chytrid fungus Batrachochytrium dendrobatidis is non-randomly distributed across amphibian breeding habitats. Divers. Distrib. 13, 781–788 (2007).

    Article  Google Scholar 

  • 87.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. J. R. Meteorol. Soc. 25, 1965–78 (2005).

    Article  Google Scholar 

  • 88.

    Kwon, S., Park, S., Lee, B. & Yoon, S. In-depth analysis of interrelation between quality scores and real errors in illumina reads. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 635–638 (2013).

  • 89.

    Rideout, J. R. et al. Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. PeerJ 2, e545 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 90.

    Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems 2, e00191–16 (2017).

  • 91.

    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 92.

    Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 93.

    Team, R. C. R: A Language and Environment for Statistical Computing. (2013).

  • 94.

    Wickham, H. Ggplot: Using the Grammar of Graphics with R. (2009)

  • 95.

    Calcagno, V., Calcagno, M. V., Java, S. & Suggests, M. A. S. S. Package ‘glmulti’ (2020).

  • 96.

    Bates, K. A. et al. Captivity and infection by the fungal pathogen Batrachochytrium salamandrivorans perturb the amphibian skin microbiome. Front. Microbiol. 10, 1834 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 97.

    Lin, D., Foster, D. P. & Ungar, L. H. VIF regression: a fast regression algorithm for large data. J. Am. Stat. Assoc. 106, 232–247 (2011).

    MathSciNet  CAS  MATH  Article  Google Scholar 

  • 98.

    Kruskal, J. B. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115–129 (1964).

    MathSciNet  MATH  Article  Google Scholar 

  • 99.

    Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27, 326–349 (1957).

    Article  Google Scholar 

  • 100.

    Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P. & Minchin, P. R. In 2012: Vegan: Community Ecology Package. R Package Version 2.0-5 (eds. Hara, O. et al.) (2014).

  • 101.

    De Caceres, M., Jansen, F. & De Caceres, M. M. Indicspecies: relationship between species and groups of sites. R package Version 1, (2016).

  • 102.

    Longo, A. V., Burrowes, P. A. & Zamudio, K. R. Genomic studies of disease-outcome in host–pathogen dynamics. Am. Zool. 54, 427–438 (2014).

    Google Scholar 

  • 103.

    Assis, A. B. D., Barreto, C. C. & Navas, C. A. Skin microbiota in frogs from the Brazilian Atlantic forest: species, forest type, and potential against pathogens. PLoS ONE 12, e0179628 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 104.

    Estrada, A. et al. Skin bacterial communities of neotropical treefrogs vary with local environmental conditions at the time of sampling. PeerJ 7, e7044 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 105.

    Muletz-Wolz, C. R., Fleischer, R. C. & Lips, K. R. Fungal disease and temperature alter skin microbiome structure in an experimental salamander system. Mol. Ecol. 28, 2917–2931 (2019).

    CAS  PubMed  Google Scholar 

  • 106.

    Xu, L. L. et al. Changes in the community structure of the symbiotic microbes of wild amphibians from the eastern edge of the Tibetan Plateau. Microbiol. Open 9, e1004 (2020).

    Article  Google Scholar 

  • 107.

    Puschendorf, R. et al. Environmental refuge from disease-driven amphibian extinction. Conserv. Biol. 25, 956–964 (2011).

    PubMed  Article  Google Scholar 

  • 108.

    Whitfield, S. M., Kerby, J., Gentry, L. R. & Donnelly, M. A. Temporal variation in infection prevalence by the amphibian chytrid fungus in three species of frogs at La Selva, Costa Rica. Biotropica 44, 779–784 (2012).

    Article  Google Scholar 

  • 109.

    Ruggeri, J. et al. Seasonal variation in population abundance and chytrid infection in stream-dwelling frogs of the Brazilian Atlantic forest. PLoS ONE 10, e0130554 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 110.

    Longo, A. V., Burrowes, P. A. & Joglar, R. L. Seasonality of Batrachochytrium dendrobatidis infection in direct-developing frogs suggests a mechanism for persistence. Dis. Aquat. Organ. 92, 253–260 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 111.

    Ellison, S., Knapp, R. A., Sparagon, W., Swei, A. & Vredenburg, V. T. Reduced skin bacterial diversity correlates with increased pathogen infection intensity in an endangered amphibian host. Mol. Ecol. 28, 127–140 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 112.

    Piovia-Scott, J. et al. Greater species richness of bacterial skin symbionts better suppresses the amphibian fungal pathogen Batrachochytrium dendrobatidis. Microb. Ecol. 74, 217–226 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 113.

    Flechas, S. V. et al. Surviving chytridiomycosis: differential anti-Batrachochytrium dendrobatidis activity in bacterial isolates from three lowland species of Atelopus. PLoS ONE 7, e44832 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 114.

    Muletz, C. R., Myers, J. M., Domangue, R. J., Herrick, J. B. & Harris, R. N. Soil bioaugmentation with amphibian cutaneous bacteria protects amphibian hosts from infection by Batrachochytrium dendrobatidis. Biol. Conserv. 152, 119–126 (2012).

    Article  Google Scholar 

  • 115.

    Woodhams, D. C., Ramsey, J. P. & Rollins-Smith, L. A. Effects of cold temperature on antimicrobial peptide synthesis and release in northern leopard frogs, Rana pipiens. Integr. Comp. Biol. 45, 1099–1099 (2005).

    Google Scholar 

  • 116.

    Bovo, R. P. et al. Physiological responses of Brazilian amphibians to an enzootic infection of the chytrid fungus Batrachochytrium dendrobatidis. Dis. Aquat. Organ. 117, 245–252 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 117.

    Familiar López, M., Rebollar, E. A., Harris, R. N., Vredenburg, V. T. & Hero, J. M. Temporal variation of the skin bacterial community and Batrachochytrium dendrobatidis infection in the terrestrial cryptic frog Philoria loveridgei. Front. Microbiol. 8, 2535 (2017).

    PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    To boost emissions reductions from electric vehicles, know when to charge

    Discovery allows early detection of shade avoidance syndrome