in

Structural Identification, Synthesis and Biological Activity of Two Volatile Cyclic Dipeptides in a Terrestrial Vertebrate

  • 1.

    Apps, P. J., Weldon, P. J. & Kramer, M. Chemical signals in terrestrial vertebrates: search for design features. Nat. Prod. Rep. 32, 1131–1153, https://doi.org/10.1039/c5np00029g (2015).

  • 2.

    Schaal, B. et al. Chemical and behavioural characterization of the rabbit mammary pheromone. Nature 424, 68, https://doi.org/10.1038/nature01739 (2003).

  • 3.

    Rasmussen, L. E., Lee, T. D., Zhang, A., Roelofs, W. L. & Daves, G. D. Jr. Purification, identification, concentration and bioactivity of (Z)-7-dodecen-1-yl acetate: sex pheromone of the female Asian elephant, Elephas maximus. Chem. Senses 22, 417–437, https://doi.org/10.1093/chemse/22.4.417 (1997).

  • 4.

    Novotny, M. V., Jemiolo, B., Harvey, S., Wiesler, D. & Marchlewska-Koj, A. Adrenal-mediated endogenous metabolites inhibit puberty in female mice. Science 231, 722–725, https://doi.org/10.1126/science.3945805 (1986).

  • 5.

    Apfelbach, R., Parsons, M., Soini, H. A. & Novotny, M. V. Are single odorous components of a predator sufficient to elicit defensive behaviors in prey species? Front. Neurosci. 9, https://doi.org/10.3389/fnins.2015.00263 (2015).

  • 6.

    Harvey, S., Jemiolo, B. & Novotny, M. Pattern of volatile compounds in dominant and subordinate male mouse urine. J. Chem. Ecol. 15, 2061–2072, https://doi.org/10.1007/bf01207438 (1989).

  • 7.

    Novotny, M. V., Harvey, S. & Jemiolo, B. Chemistry of male dominance in the house mouse, Mus domesticus. Experientia 46, 109–113, https://doi.org/10.1007/bf01955433 (1990).

  • 8.

    Ma, W., Miao, Z. & Novotny, M. V. Induction of estrus in grouped female mice (Mus domesticus) by synthetic analogues of preputial gland constituents. Chem. Senses 24, 289–293, https://doi.org/10.1093/chemse/24.3.289 (1999).

  • 9.

    Brennan, P. A. & Zufall, F. Pheromonal communication in vertebrates. Nature 444, 308–315, https://doi.org/10.1038/nature05404 (2006).

  • 10.

    Zidek, L. et al. NMR mapping of the recombinant mouse major urinary protein I binding site occupied by the pheromone 2-sec-butyl-4,5-dihydrothiazole. Biochemistry 38, 9850–9861, https://doi.org/10.1021/bi990497t (1999).

  • 11.

    Liberles, S. D. Mammalian Pheromones. Annu. Rev. Physiol. 76, 151–175, https://doi.org/10.1146/annurev-physiol-021113-170334 (2014).

  • 12.

    Kuntova, B., Stopkova, R. & Stopka, P. Transcriptomic and proteomic profiling revealed high proportions of odorant binding and antimicrobial defense proteins in olfactory tissues of the house mouse. Front. Genet. 9, 26, https://doi.org/10.3389/fgene.2018.00026 (2018).

  • 13.

    Novotny, M. V., Ma, W., Wiesler, D. & Zidek, L. Positive identification of the puberty-accelerating pheromone of the house mouse: the volatile ligands associating with the major urinary protein. Proc. R. Soc. Lond. B Biol. Sci. 266, 2017–2022, https://doi.org/10.1098/rspb.1999.0880 (1999).

  • 14.

    Burger, B. V. In The Chemistry of Pheromones and Other Semiochemicals II Topics in Current Chemistry (ed. Stefan Schulz) 231-278 (Springer Berlin Heidelberg, 2005).

  • 15.

    Hurst, J. L. et al. Individual recognition in mice mediated by major urinary proteins. Nature 414, 631, https://doi.org/10.1038/414631a (2001).

  • 16.

    Vernet-Maury, E. In Olfaction and Taste Vol. VII (ed. van der Starre, H.) 407 (IRL Press, 1980).

  • 17.

    Jemiolo, B., Gubernick, D. J., Catherine Yoder, M. & Novotny, M. Chemical characterization of urinary volatile compounds of Peromyscus californicus, a monogamous biparental rodent. J. Chem. Ecol. 20, 2489–2500, https://doi.org/10.1007/bf02036186 (1994).

  • 18.

    Jemiolo, B. & Novotny, M. Inhibition of sexual maturation in juvenile female and male mice by a chemosignal of female origin. Physiol. Behav. 55, 519–522, https://doi.org/10.1016/0031-9384(94)90110-4 (1994).

  • 19.

    Soini, H. A. et al. Investigation of scents on cheeks and foreheads of large felines in connection to the facial marking behavior. J. Chem. Ecol. 38, 145–156, https://doi.org/10.1007/s10886-012-0075-0 (2012).

  • 20.

    Albone, E. S. Mammalian semiochemistry: The investigation of chemical signals between mammals. xii + 360 (John Wiley & Sons. Ltd, 1984).

  • 21.

    Renou, M. In Neurobiology of Chemical Communication (ed. Mucignat-Caretta, C.) Ch. 2, (CRC Press/Taylor & Francis, 2014).

  • 22.

    Pruett, J. A. et al. Evolutionary interactions between visual and chemical signals: Chemosignals compensate for the loss of a visual signal in male Sceloporus lizards. J. Chem. Ecol. 42, 1164–1174, https://doi.org/10.1007/s10886-016-0778-8 (2016).

  • 23.

    Borthwick, A. D. 2,5-Diketopiperazines: Synthesis, Reactions, Medicinal Chemistry, and Bioactive Natural Products. Chem. Rev. 112, 3641–3716, https://doi.org/10.1021/cr200398y (2012).

  • 24.

    Belin, P. et al. The nonribosomal synthesis of diketopiperazines in tRNA-dependent cyclodipeptide synthase pathways. Nat. Prod. Rep. 29, 961–979, https://doi.org/10.1039/c2np20010d (2012).

  • 25.

    Aravind, L., de Souza, R. F. & Iyer, L. M. Predicted class-I aminoacyl tRNA synthetase-like proteins in non-ribosomal peptide synthesis. Biol. Direct 5, 48, https://doi.org/10.1186/1745-6150-5-48 (2010).

  • 26.

    Seguin, J. et al. Nonribosomal peptide synthesis in animals: the cyclodipeptide synthase of Nematostella. Chem. Biol. 18, 1362–1368, https://doi.org/10.1016/j.chembiol.2011.09.010 (2011).

  • 27.

    Wheeler, J. W. & Blum, M. S. Alkylpyrazine Alarm Pheromones in Ponerine Ants. Science 182, 501–503, https://doi.org/10.1126/science.182.4111.501 (1973).

  • 28.

    Ma, W., Miao, Z. & Novotny, M. V. Role of the adrenal gland and adrenal-mediated chemosignals in suppression of estrus in the house mouse: the lee-boot effect revisited. Biol. Reprod. 59, 1317–1320, https://doi.org/10.1095/biolreprod59.6.1317 (1998).

  • 29.

    von Stralendorff, F. A behaviorally relevant component of the scent signals of male Tupaia belangeri: 2,5-dimethylpyrazine. Behav. Ecol. Sociobiol. 11, 101–107, https://doi.org/10.1007/bf00300098 (1982).

    • Article
    • Google Scholar
  • 30.

    Woolfson, A. & Rothschild, M. Speculating about pyrazines. Proc. R. Soc. Lond. B Biol. Sci. 242, 113–119, https://doi.org/10.1098/rspb.1990.0113 (1990).

  • 31.

    Schwenk, K. Of tongues and noses: chemoreception in lizards and snakes. Trends Ecol. Evol. 10, 7–12, https://doi.org/10.1016/S0169-5347(00)88953-3 (1995).

  • 32.

    Cooper, W. E. Chemical discrimination by tongue-flicking in lizards: A review with hypotheses on its origin and its ecological and phylogenetic relationships. J. Chem. Ecol. 20, 439–487, https://doi.org/10.1007/bf02064449 (1994).

  • 33.

    Martín, J. & López, P. In The Reproductive Biology and Phylogeny of Lizards and Tuatara (eds. Rheubert, Siegel, & Trauth) Ch. 3, 43–77 (CRC Press, 2014).

  • 34.

    Mason, R. T. In Hormones, Brain, and Behavior Vol. 18, Physiology E Biology of the Reptilia (eds. Carl Gans & David Crews) Ch. 4, 114–206 (University of Chicago Press, 1992).

  • 35.

    Halpern, M. In Hormones, Brain and Behaviour. Biology of the Reptilia Vol. 18, Physiology E (eds. Carl Gans & David Crews) 423–523 (The University of Chicago Press, 1992).

  • 36.

    Martins, E. P., Ord, T. J., Slaven, J., Wright, J. L. & Housworth, E. A. Individual, sexual, seasonal, and temporal variation in the amount of sagebrush lizard scent marks. J. Chem. Ecol. 32, 881–893, https://doi.org/10.1007/s10886-006-9029-8 (2006).

  • 37.

    Mason, R. T. & Parker, M. R. Social behavior and pheromonal communication in Reptiles. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 196, 729–749, https://doi.org/10.1007/s00359-010-0551-3 (2010).

  • 38.

    Hews, D. K. & Martins, E. P. In Reptiles in Research: Investigations of Ecology, Physiology and Behavior from Desert to Sea (ed. Lutterschmidt, W. L.) Ch. 7, 111–141 (Nova Publishers, 2013).

  • 39.

    Campos, S. M. Communication breakdown: Evolution of territorial chemical signaling in a diverse lizard genus Ph.D. thesis, Indiana University, Bloomington, (2018).

  • 40.

    Mangiacotti, M. et al. First experimental evidence that proteins from femoral glands convey identity related information in a lizard. Acta Ethol. 22, 57–65, https://doi.org/10.1007/s10211-018-00307-1 (2019).

    • Article
    • Google Scholar
  • 41.

    Baeckens, S. et al. Environmental conditions shape the chemical signal design of lizards. Funct. Ecol. 32, 566–580, https://doi.org/10.1111/1365-2435.12984 (2018).

    • Article
    • Google Scholar
  • 42.

    Martín, J. & López, P. Condition-dependent pheromone signaling by male rock lizards: More oily scents are more attractive. Chem. Senses 35, 253–262, https://doi.org/10.1093/chemse/bjq009 (2010).

  • 43.

    Martín, J. & López, P. Links between male quality, male chemical signals, and female mate choice in Iberian rock lizards. Funct. Ecol. 20, 1087–1096 (2006).

    • Article
    • Google Scholar
  • 44.

    Leaché, A. D. Species trees for spiny lizards (genus Sceloporus): identifying points of concordance and conflict between nuclear and mitochondrial data. Mol. Phylogen. Evol. 54, 162–171, https://doi.org/10.1016/j.ympev.2009.09.006 (2010).

  • 45.

    Alberts, A. C., Pratt, N. C. & Phillips, J. A. Seasonal productivity of lizard femoral glands: relationship to social dominance and androgen levels. Physiol. Behav. 51, 729–733, https://doi.org/10.1016/0031-9384(92)90109-F (1992).

  • 46.

    Alberts, A. C. Phylogenetic and adaptive variation in lizard femoral gland secretions. Copeia 1991, 69–79, https://doi.org/10.2307/1446249 (1991).

    • Article
    • Google Scholar
  • 47.

    Hews, D. K., Date, P., Hara, E. & Castellano, M. Field presentation of male secretions alters social display in Sceloporus virgatus but not S. undulatus lizards. Behav. Ecol. Sociobiol. 65, 1403–1410, https://doi.org/10.1007/s00265-011-1150-1 (2011).

    • Article
    • Google Scholar
  • 48.

    Rhee, K. H. Cyclic dipeptides exhibit synergistic, broad spectrum antimicrobial effects and have anti-mutagenic properties. Int. J. Antimicrob. Agents 24, 423–427, https://doi.org/10.1016/j.ijantimicag.2004.05.005 (2004).

  • 49.

    Pruett, J. A. Chemical ecology of male Sceloporus lizards: an integrative approach to the study of multimodal signals, hormones, and behavior, Indiana State University, (2017).

  • 50.

    Bondoc, K. G. V., Lembke, C., Vyverman, W. & Pohnert, G. Searching for a Mate: Pheromone-directed movement of the benthic diatom Seminavis robusta. Microb. Ecol. 72, 287–294, https://doi.org/10.1007/s00248-016-0796-7 (2016).

  • 51.

    Gowrishankar, S., Poornima, B. & Pandian, S. K. Inhibitory efficacy of cyclo(l-leucyl-l-prolyl) from mangrove rhizosphere bacterium–Bacillus amyloliquefaciens (MMS-50) toward cariogenic properties of Streptococcus mutans. Res. Microbiol. 165, 278–289, https://doi.org/10.1016/j.resmic.2014.03.004 (2014).

  • 52.

    Gowrishankar, S. et al. Cyclic dipeptide cyclo(l-leucyl-l-prolyl) from marine Bacillus amyloliquefaciens mitigates biofilm formation and virulence in Listeria monocytogenes. Pathog. Dis. 74, https://doi.org/10.1093/femspd/ftw017 (2016).

    • Article
    • Google Scholar
  • 53.

    Noh, S. W. et al. Cyclic dipeptides from Bacillus vallismortis BS07 require key components of plant immunity to induce disease resistance in Arabidopsis against Pseudomonas infection. Plant. Pathol. J. 33, 402–409, https://doi.org/10.5423/ppj.oa.11.2016.0255 (2017).

  • 54.

    Kalinovskaya, N. I., Romanenko, L. A. & Kalinovsky, A. I. Antibacterial low-molecular-weight compounds produced by the marine bacterium Rheinheimera japonica KMM 9513T. Antonie Van Leeuwenhoek 110, 719–726, https://doi.org/10.1007/s10482-017-0839-1 (2017).

  • 55.

    Santos, O. C. S. et al. Investigation of biotechnological potential of sponge-associated bacteria collected in Brazilian coast. Lett. Appl. Microbiol. 60, 140–147, https://doi.org/10.1111/lam.12347 (2015).

  • 56.

    Yan, P. S. et al. Cyclo(L-leucyl-L-prolyl) produced by Achromobacter xylosoxidans inhibits aflatoxin production by Aspergillus parasiticus. Appl. Environ. Microbiol. 70, 7466–7473, https://doi.org/10.1128/aem.70.12.7466-7473.2004 (2004).

  • 57.

    Barrow, C. J. & Sun, H. H. Spiroquinazoline, a novel substance P inhibitor with a new carbon skeleton, isolated from Aspergillus flavipes. J. Nat. Prod. 57, 471–476, https://doi.org/10.1021/np50106a005 (1994).

  • 58.

    Morgan, E. D. et al. Comparative survey of abdominal gland secretions of the ant subfamily Ponerinae. J. Chem. Ecol. 29, 95–114, https://doi.org/10.1023/a:1021928630441 (2003).

  • 59.

    Mitova, M., Tutino, M. L., Infusini, G., Marino, G. & De Rosa, S. Exocellular peptides from Antarctic psychrophile Pseudoalteromonas haloplanktis. Mar. Biotechnol. 7, 523–531, https://doi.org/10.1007/s10126-004-5098-2 (2005).

  • 60.

    Furtado, N. A. J. C. et al. Diketopiperazines produced by an Aspergillus fumigatus Brazilian strain. J. Braz. Chem. Soc. 16, 1448–1453, https://doi.org/10.1590/S0103-50532005000800026 (2005).

  • 61.

    Huberman, L. et al. Antibacterial substances of low molecular weight isolated from the blowfly, Lucilia sericata. Med. Vet. Entomol. 21, 127–131, https://doi.org/10.1111/j.1365-2915.2007.00668.x (2007).

  • 62.

    Baer, B., Maile, R., Schmid-Hempel, P., Morgan, E. D. & Jones, G. R. Chemistry of a mating plug in bumblebees. J. Chem. Ecol. 26, 1869–1875, https://doi.org/10.1023/a:1005596707591 (2000).

  • 63.

    Milne, P. J. & Kilian, G. In Comprehensive Natural Products II: Chemistry and Biology Vol. 5 (eds. Lewis Mander & Hung-Wen Liu) Ch. 20, 657–698 (Elsevier, 2010).

  • 64.

    Erspamer, V., Erspamer, G. F. & Cei, J. M. Active peptides in the skins of two hundred and thirty American amphibian species. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 85, 125–137, https://doi.org/10.1016/0742-8413(86)90063-0 (1986).

  • 65.

    López, L. C. & Morgan, E. D. Explanation of bitter taste of venom of ponerine ant, Pachycondyla apicalis. J. Chem. Ecol. 23, 705–712, https://doi.org/10.1023/B:JOEC.0000006405.26872.ef (1997).

    • Article
    • Google Scholar
  • 66.

    Weldon, P. J., Flachsbarth, B. & Schulz, S. Natural products from the integument of nonavian reptiles. Nat. Prod. Rep. 25, 738–756, https://doi.org/10.1039/b509854h (2008).

  • 67.

    Novotny, M. V., Harvey, S., Jemiolo, B. & Alberts, J. Synthetic pheromones that promote inter-male aggression in mice. Proc. Natl. Acad. Sci. USA 82, 2059–2061, https://doi.org/10.1073/pnas.82.7.2059 (1985).

  • 68.

    Martín, J. & López, P. Intersexual differences in chemosensory responses to selected lipids reveal different messages conveyed by femoral secretions of male Iberian rock lizards. Amphib-reptil. 29, 572–578, https://doi.org/10.1163/156853808786230479 (2008).

    • Article
    • Google Scholar
  • 69.

    Stark, T. & Hofmann, T. Structures, sensory activity, and dose/response functions of 2,5-Diketopiperazines in roasted cocoa nibs (Theobroma cacao). J. Agric. Food Chem. 53, 7222–7231, https://doi.org/10.1021/jf051313m (2005).

  • 70.

    LeMaster, M. P. & Mason, R. T. Variation in a female sexual attractiveness pheromone controls male mate choice in garter snakes. J. Chem. Ecol. 28, 1269–1285, https://doi.org/10.1023/a:1016294003641 (2002).

  • 71.

    Hews, D. K. & Benard, M. F. Negative association between conspicuous visual display and chemosensory behavior in two phrynosomatid lizards. Ethology 107, 839–850, https://doi.org/10.1046/j.1439-0310.2001.00712.x (2001).

    • Article
    • Google Scholar
  • 72.

    Abell, A. J. Estimating paternity with spatial behaviour and DNA fingerprinting in the striped plateau lizard, Sceloporus virgatus (Phrynosomatidae). Behav. Ecol. Sociobiol. 41, 217–226, https://doi.org/10.1007/s002650050382 (1997).

    • Article
    • Google Scholar
  • 73.

    Rose, B. Factors affecting activity in Sceloporus virgatus. Ecology 62, 706–716, https://doi.org/10.2307/1937739 (1981).

    • Article
    • Google Scholar
  • 74.

    Martins, E. P. In Lizard Ecology: Historical and Experimental Perspectives (eds. Vitt, L. J. & Pianka, E. R.) Ch. 6, 117–144 (Princeton University Press, 1994).

  • 75.

    Smith, D. C. Home range and territory in the striped plateau lizard (Sceloporus virgatus). Anim. Behav. 33, 417–427, https://doi.org/10.1016/S0003-3472(85)80066-X (1985).

    • Article
    • Google Scholar
  • 76.

    Herrmann, M. A. et al. The effects of chemical signal content in social communication of lizards. Integr. Comp. Biol. 59, E334, https://doi.org/10.1093/icb/icz004 (2019).

    • Article
    • Google Scholar
  • 77.

    Soini, H. A. et al. Stir bar sorptive extraction: a new quantitative and comprehensive sampling technique for determination of chemical signal profiles from biological media. J. Chem. Ecol. 31, 377–392, https://doi.org/10.1007/s10886-005-1347-8 (2005).

  • 78.

    Guo, Y.-C., Cao, S.-X., Zong, X.-K., Liao, X.-C. & Zhao, Y.-F. ESI-MSn study on the fragmentation of protonated cyclic-dipeptides. Spectroscopy 23, 131–139, https://doi.org/10.3233/SPE-2009-0388 (2009).

  • 79.

    Gnanaprakasam, B., Balaraman, E., Ben-David, Y. & Milstein, D. Synthesis of peptides and pyrazines from beta-amino alcohols through extrusion of H2 catalyzed by ruthenium pincer complexes: ligand-controlled selectivity. Angew. Chem. Int. Ed. 50, 12240–12244, https://doi.org/10.1002/anie.201105876 (2011).

  • 80.

    Martín, J. & López, P. Scent may signal fighting ability in male Iberian rock lizards. Biol. Lett. 3, 125–127, https://doi.org/10.1098/rsbl.2006.0589 (2007).

  • 81.

    Cooper, W. E. Jr. & Burghardt, G. M. A comparative analysis of scoring methods for chemical discrimination of prey by squamate reptiles. J. Chem. Ecol. 16, 45–65, https://doi.org/10.1007/BF01021267 (1990).

  • 82.

    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL, http://www.R-project.org, 2018).

  • 83.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, t. R. D. C. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-108, http://CRAN.R-project.org/package=nlme (2013).

  • 84.

    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70, https://doi.org/10.2307/4615733 (1979).


  • Source: Ecology - nature.com

    A long-term monitoring dataset of fish assemblages in rocky tidepools on the northern coast of Taiwan

    Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems