in

Symbiotic bacterial communities in rainforest fungus-farming ants: evidence for species and colony specificity

  • 1.

    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the United States of America 110, 3229–3236 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Koskella, B., Hall, L. J. & Metcalf, C. J. E. The microbiome beyond the horizon of ecological and evolutionary theory. Nature Ecology & Evolution 1, 1606–1615 (2017).

    Google Scholar 

  • 3.

    Xu, J. Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Molecular Ecology 15, 1713–1731 (2006).

    CAS  PubMed  Google Scholar 

  • 4.

    Aylward, F. O. et al. Convergent Bacterial Microbiotas in the Fungal Agricultural Systems of Insects. mBio 5 (2014).

  • 5.

    Parfrey, L. W., Moreau, C. S. & Russell, J. A. Introduction: The host-associated microbiome: Pattern, process and function. Molecular Ecology 27, 1749–1765 (2018).

    PubMed  Google Scholar 

  • 6.

    Hölldobler, B. & Wilson, E. O. The leafcutter ants: civilization by instinct. (Norton (2011).

  • 7.

    Currie, C. R., Bot, A. N. M. & Boomsma, J. J. Experimental evidence of a tripartite mutualism: bacteria protect ant fungus gardens from specialized parasites. Oikos 101, 91–102 (2003).

    Google Scholar 

  • 8.

    Sosa-Calvo, J., Ješovnik, A., Vasconcelos, H. L., Bacci, M. & Schultz, T. R. Rediscovery of the enigmatic fungus-farming ant ‘Mycetosoritis’ asper Mayr (Hymenoptera: Formicidae): Implications for taxonomy, phylogeny, and the evolution of agriculture in ants. PLOS ONE 12, e0176498 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Van Borm, S., Billen, J. & Boomsma, J. J. The diversity of microorganisms associated with Acromyrmex leafcutter ants. BMC Evolutionary Biology 2, 9 (2002).

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Pinto-Tomás, A. A. et al. Symbiotic Nitrogen Fixation in the Fungus Gardens of Leaf-Cutter Ants. Science 326, 1120–1123 (2009).

    ADS  PubMed  Google Scholar 

  • 11.

    Aylward, F. O. et al. Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens. The ISME Journal 6, 1688–1701 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Kellner, K., Ishak, H. D., Linksvayer, T. A. & Mueller, U. G. Bacterial community composition and diversity in an ancestral ant fungus symbiosis. FEMS Microbiology Ecology 91, fiv073 (2015).

    PubMed  Google Scholar 

  • 13.

    Currie, C. R. et al. Coevolved Crypts and Exocrine Glands Support Mutualistic Bacteria in Fungus-Growing Ants. Science 311, 81–83 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Little, A. E. F. & Currie, C. R. Symbiotic complexity: discovery of a fifth symbiont in the attine ant–microbe symbiosis. Biology Letters 3, 501–504 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Cafaro, M. J. et al. Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria. Proceedings of the Royal Society B: Biological Sciences 278, 1814–1822 (2011).

    PubMed  Google Scholar 

  • 16.

    Li, H. et al. Convergent evolution of complex structures for ant–bacterial defensive symbiosis in fungus-farming ants. Proceedings of the National Academy of Sciences of the United States of America 115, 10720–10725 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Kaltenpoth, M. Actinobacteria as mutualists: general healthcare for insects? Trends in Microbiology 17, 529–535 (2009).

    CAS  PubMed  Google Scholar 

  • 18.

    Currie, C. R. A Community of Ants, Fungi, and Bacteria: A Multilateral Approach to Studying Symbiosis. Annual Review of Microbiology 55, 357–380 (2001).

    CAS  PubMed  Google Scholar 

  • 19.

    Ronque, M. U. V., Feitosa, R. M. & Oliveira, P. S. Natural history and ecology of fungus-farming ants: a field study in Atlantic rainforest. Insectes Sociaux 66, 375–387 (2019).

    Google Scholar 

  • 20.

    Joly, C. A. et al. As parcelas permanentes do projeto temático Biota Gradiente Funcional: composição florística, estrutura e funcionamento da floresta ombrófila densa dos Núcleos Picinguaba e Santa Virgínia do Parque Estadual da Serra do Mar, Estado de São Paulo, Brasil. In: Experiências de monitoramento no Bioma Mata Atlântica com uso de parcelas permanentes (ed Sanquetta, C. R.) (Funpar, Curitiba, pp 109-129 (2008).

  • 21.

    Ronque, M. U. V. Ecology, behavior and microbiology of fungus-farming ants (Formicidae, Myrmicinae, Attini, Attina) in Atlantic rainforest. PhD dissertation, Institute of Biology, University of Campinas, Campinas, Brazil (2018).

  • 22.

    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Applied and Environmental Microbiology 79, 5112–5120 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America 108, 4516–4522 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 24.

    Bletz, M. C. et al. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nature Communications 7, 13699 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299 (1994).

    CAS  PubMed  Google Scholar 

  • 26.

    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37, 852–857 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Amir, A. et al. Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. mSystems 2, e00191–16 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Katoh, K. & Standley, D. M. Mafft multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLOS ONE 5, e9490 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Bokulich, N. A. et al. Optimizing taxonomic classification of marker‐gene amplicon sequences with QIIME 2’s q2‐feature‐classifier plugin. Microbiome 6, 90 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 33.

    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The ISME Journal 6, 610–618 (2012).

    CAS  PubMed  Google Scholar 

  • 34.

    Bioinformatics & Evolutionary Genomics. http://http://bioinformatics.psb.ugent.be/webtools/Venn/. Accessed 08 April 2020.

  • 35.

    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing (2017).

  • 36.

    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. The ISME Journal 5, 169–172 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 37.

    Sapountzis, P., Nash, D. R., Schiøtt, M. & Boomsma, J. J. The evolution of abdominal microbiomes in fungus-growing ants. Molecular Ecology 28, 879–899 (2019).

    PubMed  Google Scholar 

  • 38.

    Suen, G. et al. Ant insect herbivore microbiome with high plant biomass-degrading capacity. PLOS ONE 6, e1001129 (2010).

    Google Scholar 

  • 39.

    Goodfellow, M. & Williams, S. T. Ecology of Actinomycetes. Annual Review of Microbiology 37, 189–216 (1983).

    CAS  PubMed  Google Scholar 

  • 40.

    Poulsen, M. et al. Variation in Pseudonocardia antibiotic defence helps govern parasite-induced morbidity in Acromyrmex leaf-cutting ants. Environmental Microbiology Reports 2, 534–540 (2010).

    CAS  PubMed  Google Scholar 

  • 41.

    Muletz Wolz, C. R., Yarwood, S. A., Campbell Grant, E. H., Fleischer, R. C. & Lips, K. R. Effects of host species and environment on the skin microbiome of Plethodontid salamanders. Journal of Animal Ecology 87, 341–353 (2017).

    PubMed  Google Scholar 

  • 42.

    Dillon, R. J. & Dillon, V. M. The gut bacteria of insects: nonpathogenic interactions. Annual Review of Entomology 49, 71–92 (2004).

    CAS  PubMed  Google Scholar 

  • 43.

    Fernandez-Marin, H., Zimmerman, J. K., Nash, D. R., Boomsma, J. J. & Wcislo, W. T. Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants. Proceedings of the Royal Society B: Biological Sciences 276, 2263–2269 (2009).

    PubMed  Google Scholar 

  • 44.

    Council, S. E. et al. Diversity and evolution of the primate skin microbiome. Proceedings of the Royal Society B: Biological Sciences 283, 20152586 (2016).

    PubMed  Google Scholar 

  • 45.

    McFrederick, Q. S., Wcislo, W. T., Hout, M. C. & Mueller, U. G. Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees. FEMS Microbiology Ecology 88, 398–406 (2014).

    CAS  PubMed  Google Scholar 

  • 46.

    Ramalho, M. O., Bueno, O. C. & Moreau, C. S. Microbial composition of spiny ants (Hymenoptera: Formicidae: Polyrhachis) across their geographic range. BMC Evolutionary Biology 17 (2017).

  • 47.

    Ramalho, M. O., Bueno, O. C. & Moreau, C. S. Species-specific signatures of the microbiome from Camponotus and Colobopsis ants across developmental stages. PLOS ONE 12, e0187461 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Ishak, H. D. et al. Microbiomes of ant castes implicate new microbial roles in the fungus-growing ant Trachymyrmex septentrionalis. Scientific Reports 1 (2011).

  • 49.

    Lokmer, A. & Mathias Wegner, K. Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection. The ISME Journal 9, 670–682 (2015).

    CAS  PubMed  Google Scholar 

  • 50.

    Schmidt, V. T., Smith, K. F., Melvin, D. W. & Amaral-Zettler, L. A. Community assembly of a euryhaline fish microbiome during salinity acclimation. Molecular Ecology 24, 2537–2550 (2015).

    PubMed  Google Scholar 

  • 51.

    Hölldobler, B. & Wilson, E. O. The ants. (Belknap Press of Harvard University Press (1990).

  • 52.

    Archie, E. A. & Theis, K. R. Animal behaviour meets microbial ecology. Animal Behaviour 82, 425–436 (2011).

    Google Scholar 

  • 53.

    Minkley, N., Fujita, A., Brune, A. & Kirchner, W. H. Nest specificity of the bacterial community in termite guts (Hodotermes mossambicus). Insectes Sociaux 53, 339–344 (2006).

    Google Scholar 

  • 54.

    Koch, H., Cisarovsky, G. & Schmid-Hempel, P. Ecological effects on gut bacterial communities in wild bumblebee colonies. Journal of Animal Ecology 81, 1202–1210 (2012).

    PubMed  Google Scholar 

  • 55.

    Boucias, D. G. et al. The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Molecular Ecology 22, 1836–1853 (2013).

    CAS  PubMed  Google Scholar 

  • 56.

    Hu, Y., Łukasik, P., Moreau, C. S. & Russell, J. A. Correlates of gut community composition across an ant species (Cephalotes varians) elucidate causes and consequences of symbiotic variability. Molecular Ecology 23, 1284–1300 (2014).

    PubMed  Google Scholar 

  • 57.

    Theis, K. R., Schmidt, T. M. & Holekamp, K. E. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Scientific Reports 2 (2012).

  • 58.

    Leclaire, S., Jacob, S., Greene, L. K., Dubay, G. R. & Drea, C. M. Social odours covary with bacterial community in the anal secretions of wild meerkats. Scientific Reports 7, 3240 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Teseo, S. et al. The scent of symbiosis: gut bacteria may affect social interactions in leaf-cutting ants. Animal Behaviour 150, 239–254 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    Desertifying deserts

    Researchers find solar photovoltaics benefits outweigh costs