in

Temperature-related body size change of marine benthic macroinvertebrates across the Early Toarcian Anoxic Event

  • 1.

    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. PNAS 106(31), 12788–12793, https://doi.org/10.1073/pnas.0902080106 (2009).

  • 2.

    Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406, https://doi.org/10.1038/NCLIMATE1259 (2011).

  • 3.

    Reuman, D. C., Holt, R. D. & Yvon-Durocher, G. A metabolic perspective on competition and body size reductions with warming. J. Anim. Ecol. 83, 59–69, https://doi.org/10.1111/1365-2656.12064 (2014).

  • 4.

    Calosi, P., Putnam, H. M., Twitchett, R. J. & Vermandele, F. Marine metazoan modern mass extinction: Improving predictions by integrating fossil, modern, and physiological data. Annu. Rev. Mar. Sci. 11, 369–390, https://doi.org/10.1146/annurev-marine-010318-095106 (2019).

  • 5.

    Song, H. et al. Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath. Sci. Rep. 4, srep04132, https://doi.org/10.1038/srep04132 (2014).

  • 6.

    Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Bio. 220, 2685–2696, https://doi.org/10.1242/jeb.134585 (2017).

    • Article
    • Google Scholar
  • 7.

    Pörtner, H.-O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692, https://doi.org/10.1126/science.ll63156 (2008).

  • 8.

    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26(6), 285–291, https://doi.org/10.1016/j.tree.2011.03.005 (2011).

  • 9.

    Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A. & Merilä, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17, 167–178, https://doi.org/10.1111/j.1365-294X.2007.03413.x (2008).

  • 10.

    Pálfy, J. & Smith, P. L. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism. Geology 28(8), 747–750, 10.1130/0091-7613(2000)028<0747:sbejeo>2.3.co;2 (2000).

  • 11.

    Morten, S. D. & Twitchett, R. J. Fluctuations in the body size of marine invertebrates through the Pliensbachian–Toarcian extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 29–38, https://doi.org/10.1016/j.palaeo.2009.08.023 (2009).

    • Article
    • Google Scholar
  • 12.

    Caswell, B. A. & Coe, A. L. Primary productivity controls on opportunistic bivalves during Early Jurassic oceanic deoxygenation. Geology 41(11), 1163–1166, https://doi.org/10.1130/G34819.1 (2013).

  • 13.

    Martindale, R. C. & Aberhan, M. Response of macrobenthic communities to the Toarcian Oceanic Anoxic Event in northeastern Panthalassa (Ya Ha Tinda, Alberta, Canada). Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 103–120, https://doi.org/10.1016/j.palaeo.2017.01.009 (2017).

    • Article
    • Google Scholar
  • 14.

    Caswell, B. & Dawn, S. J. Recovery of benthic communities following the Toarcian oceanic anoxic event in the Cleveland Basin, UK. Palaeogeogr. Palaeoclimatol. Palaeoecol. 521, 114–126, https://doi.org/10.1016/j.palaeo.2019.02.014 (2019).

    • Article
    • Google Scholar
  • 15.

    Ros-Franch, S. et al. Population response during an Oceanic Anoxic Event: The case of Posidonotis (Bivalvia) from the lower Jurassic of the Neuquén Basin, Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol. 525, 57–67, https://doi.org/10.1016/j.palaeo.2019.04.009 (2019).

    • Article
    • Google Scholar
  • 16.

    Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11, Q03004, https://doi.org/10.1029/2009GC002788 (2010).

  • 17.

    Dera, G. & Donnadieu, Y. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event. Paleoceanography 27, PA2211, https://doi.org/10.1029/2012PA002283 (2012).

  • 18.

    Them, T. R. et al. Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction. PNAS 115(26), 6596–6601, https://doi.org/10.1073/pnas.1803478115 (2018).

  • 19.

    Fürsich, F. T., Berndt, R., Scheuer, T. & Gahr, M. Comparative ecological analysis of Toarcian (Lower Jurassic) benthic faunas from southern France and east-central Spain. Lethaia 34, 169–199, https://doi.org/10.1111/j.1502-3931.2001.tb00048.x (2001).

    • Article
    • Google Scholar
  • 20.

    Gómez, J. J. & Goy, A. Warming-driven mass extinction in the Early Toarcian (Early Jurassic) of northern and central Spain. Correlation with other time-equivalent European sections. Palaeogeogr. Palaeoclimatol. Palaeoecol. 306, 176–195, https://doi.org/10.1016/j.palaeo.2011.04.018 (2011).

    • Article
    • Google Scholar
  • 21.

    García Joral, F., Baeza-Carratalá, J. F. & Goy, A. Changes in brachiopod body size prior to the Early Toarcian (Jurassic) mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 506, 242–249, https://doi.org/10.1016/j.palaeo.2018.06.045 (2018).

    • Article
    • Google Scholar
  • 22.

    Piazza, V., Duarte, L. V., Renaudie, J. & Aberhan, M. Reductions in body size of benthic macroinvertebrates as a precursor of the early Toarcian (Early Jurassic) extinction event in the Lusitanian Basin, Portugal. Paleobiology 45(2), 296–316, https://doi.org/10.1017/pab.2019.11 (2019).

    • Article
    • Google Scholar
  • 23.

    Ruvalcaba Baroni, I. et al. Ocean circulation in the Toarcian (Early Jurassic): A key control on deoxygenation and carbon burial on the European shelf. Paleoceanography and Paleoclimatology 33, 994–1012, https://doi.org/10.1029/2018PA003394 (2018).

    • Article
    • Google Scholar
  • 24.

    García Joral, F., Gómez, J. J. & Goy, A. Mass extinction and recovery of the Early Toarcian (Early Jurassic) brachiopods linked to climate change in Northern and Central Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302, 367–380, https://doi.org/10.1016/j.palaeo.2011.01.023 (2011).

    • Article
    • Google Scholar
  • 25.

    Danise, S., Twitchett, R. J. & Little, C. T. S. Environmental controls on Jurassic marine ecosystems during global warming. Geology 43(3), 263–266, https://doi.org/10.1130/G36390.1 (2015).

  • 26.

    Danise, S. et al. Stratigraphic and environmental control on marine benthic community change through the early Toarcian extinction event (Iberian Range, Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 524, 183–200, https://doi.org/10.1016/j.palaeo.2019.03.039 (2019).

    • Article
    • Google Scholar
  • 27.

    Goy, A., Gómez, J. J. & Yébenes, A. El Jurásico de la Rama Castellana de la Cordillera Ibérica (Mitad Norte). Est. Geol. 32, 391–423 (1976).

    • Google Scholar
  • 28.

    Gahr, M. E. Palökologie des Makrobenthos aus dem Unter-Toarc SW-Europas. Beringeria 31, 3–204 (2002).

    • Google Scholar
  • 29.

    Gahr, M. E. Response of Lower Toarcian (Lower Jurassic) macrobenthos of the Iberian Peninsula to sea level changes and mass extinction. J. Iberian Geol. 31(2), 197–215 (2005).

    • Google Scholar
  • 30.

    Gómez, J. J. & Goy, A. Late Triassic and Early Jurassic palaeogeographic evolution and depositional cycles of the Western Tethys Iberian platform system (Eastern Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 77–94, https://doi.org/10.1016/j.palaeo.2005.03.010 (2005).

    • Article
    • Google Scholar
  • 31.

    García Joral, F. & Goy, A. Rhynchonellida (Brachiopoda) Biozones of the Toarcian in the Iberian and Cantabrian Cordilleras (Spain) in Comunicaciones del V Congreso del Jurásico de España (eds. Ruiz-Omeñaca, J. I., Piñuela, L. & García-Ramos, J. C.) 3–9 (Museo del Jurásico de Asturias, Colunga (2010).

  • 32.

    Ullmann, C. V. et al. Warm afterglow from the Toarcian Oceanic Anoxic Event drives the success of deep-adapted brachiopods. (revised ms submitted to Sci. Rep.).

  • 33.

    Aurell, M. et al. Transgressive–regressive cycles and Jurassic palaeogeography of northeast Iberia. Sediment. Geol. 162, 239–271, https://doi.org/10.1016/S0037-0738(03)00154-4 (2003).

  • 34.

    Fürsich, F. T. Palaeoecology and evolution of Mesozoic salinity-controlled benthic macroinvertebrate associations. Lethaia 26, 327–346 (1994).

    • Article
    • Google Scholar
  • 35.

    Brand, U. et al. Oxygen isotopes and MgCO3 in brachiopod calcite and a new paleotemperature equation. Chem. Geol. 359, 23–31, https://doi.org/10.1016/j.chemgeo.2013.09.014 (2013).

  • 36.

    McArthur, J. M., Algeo, T. J., van de Schootbrugge, B., Li, Q. & Howarth, R. J. Basinal restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 23, PA4217, https://doi.org/10.1029/2008PA001607 (2008).

  • 37.

    Harazim, D. A. et al. Spatial variability of watermass conditions within the European Epicontinental Seaway during the Early Jurassic (Pliensbachian–Toarcian). Sedimentology 60, 359–390, https://doi.org/10.1111/j.1365-3091.2012.01344.x (2013).

  • 38.

    Korte, C. et al. Jurassic climate mode governed by ocean gateway. Nat. Comm. 6, 10015, https://doi.org/10.1038/ncomms10015 (2015).

  • 39.

    Thierry, J. et al. Middle Toarcian in Atlas Peri-Tethys Paleogeographical Maps (eds. Dercourt, J. et al.) 1–97 (Paris (2000).

  • 40.

    van der Veer, G., Voerkelius, S., Lorentz, G., Heiss, G. & Hoogewerff, J. A. Spatial interpolation of the deuterium and oxygen-18 composition of global precipitation using temperature as ancillary variable. J. Geochem. Explor. 101(2), 175–184, https://doi.org/10.1016/j.gexplo.2008.06.008 (2009).

  • 41.

    Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. PNAS 105(40), 15452–15457, https://doi.org/10.1073/pnas.0803833105 (2008).

  • 42.

    Parker, L. M. et al. Predicting the response of molluscs to the impact of ocean acidification. Biology 2, 651–692, https://doi.org/10.3390/biology2020651 (2013).

  • 43.

    Cross, E. L., Harper, E. M. & Peck, L. S. A 120-year record of resilience to environmental change in brachiopods. Glob. Change Biol. 24, 2262–2271, https://doi.org/10.1111/gcb.14085 (2018).

  • 44.

    Peck, L. S. & Harper, E. M. Variation in size of living articulated brachiopods with latitude and depth. Mar. Biol. 157, 2205–2213, https://doi.org/10.1007/s00227-010-1486-5 (2010).

    • Article
    • Google Scholar
  • 45.

    Steele-Petrović, H. M. Brachiopod food and feeding processes. Palaeontology 19, 417–436 (1976).

    • Google Scholar
  • 46.

    Audzijonyte, A. et al. Is oxygen limitation in warming waters a valid mechanism to explain decreased body sizes in aquatic ectotherms? Glob. Ecol. Biogeogr. 28, 64–77, https://doi.org/10.1111/geb.12847 (2019).

    • Article
    • Google Scholar
  • 47.

    Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. PNAS 109(47), 19310–19314, https://doi.org/10.1073/pnas.1210460109 (2012).

  • 48.

    Verberk, W. C. E. P. & Atkinson, D. Why polar gigantism and Palaeozoic gigantism are not equivalent: effects of oxygen and temperature on the body size of ectotherms. Funct. Ecol. 27, 1275–1285, https://doi.org/10.1111/1365-2435.12152 (2013).

    • Article
    • Google Scholar
  • 49.

    Moss, D. K. et al. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution. Proc. R. Soc. B 283, 20161364, https://doi.org/10.1098/rspb.2016.1364 (2016).

  • 50.

    Berke, S. K., Jablonski, D., Krug, A. Z., Roy, K. & Tomasovych, A. Beyond Bergmann’s rule: size–latitude relationships in marine Bivalvia world-wide. Glob. Ecol. Biogeogr. 22, 173–183, https://doi.org/10.1111/j.1466-8238.2012.00775.x (2013).

    • Article
    • Google Scholar
  • 51.

    Atkinson, D., Morley, S. A. & Hughes, R. N. From cells to colonies: At what levels of body organization does the ‘temperature-size rule’ apply? Evol. Dev. 8(2), 202–214, https://doi.org/10.1111/j.1525-142X.2006.00090.x (2006).

    • Article
    • Google Scholar
  • 52.

    Pörtner, H.-O. Climate dependent evolution of Antarctic ectotherms: an integrative analysis. Deep-Sea Res. II 53(8-10), 1071–1104, https://doi.org/10.1016/j.dsr2.2006.02.015 (2006).

  • 53.

    Pörtner, H.-O. & Knust, R. Climate Change Affects Marine Fishes Through the Oxygen Limitation of Thermal Tolerance. Science 315(5808), 95–97, https://doi.org/10.1126/science.1135471 (2017).

  • 54.

    Peck, L. S., Clark, M. S., Morley, S. A., Massey, A. L. & Rossetti, H. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct. Ecol. 23, 248–256, https://doi.org/10.1111/j.1365-2435.2008.01537.x (2009).

    • Article
    • Google Scholar
  • 55.

    Pörtner, H.-O. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893, https://doi.org/10.1242/jeb.037523 (2010).

    • Article
    • Google Scholar
  • 56.

    Clark, M. S. et al. Biodiversity in marine invertebrate responses to acute warming revealed by a comparative multi-omics approach. Glob. Chang. Biol. 23, 318–330, https://doi.org/10.1111/gcb.13357 (2017).

    • Article
    • Google Scholar
  • 57.

    Vörös, A. The smooth brachiopods of the Mediterranean Jurassic: Refugees or invaders? Palaeogeogr. Palaeoclimatol. Palaeoecol. 223, 222–242, https://doi.org/10.1016/j.palaeo.2005.04.006 (2005).

    • Article
    • Google Scholar
  • 58.

    Payne, J. L., Heim, N. A., Knope, M. L. & McClain, C. R. Metabolic dominance of bivalves predates brachiopod diversity decline by more than 150 million years. Proc. R. Soc. Lond. B 281, 20133122, https://doi.org/10.1098/rspb.2013.3122 (2014).

    • Article
    • Google Scholar
  • 59.

    Canudo, J. I. The collection of type fossils of the Natural Science Museum of the University of Zaragoza (Spain). Geoheritage 10, 385–392, https://doi.org/10.1007/s12371-017-0228-1 (2018).

    • Article
    • Google Scholar
  • 60.

    Schöne, B. R. & Fiebig, J. Seasonality in the North Sea during the Allerød and Late Medieval climate optimum using bivalve sclerochronology. Int. J. Earth Sci. 98(1), 83–98, https://doi.org/10.1007/s00531-008-0363-7 (2009).

  • 61.

    Ullmann, C. V., Wiechert, U. & Korte, C. Oxygen isotope fluctuations in a modern North Sea oyster (Crassostrea gigas) compared with annual variations in seawater temperature: Implications for palaeoclimate studies. Chem. Geol. 277(1-2), 160–166, https://doi.org/10.1016/j.chemgeo.2010.07.019 (2010).

  • 62.

    Ullmann, C. V., Frei, R., Korte, C. & Lüter, C. Element/Ca, C and O isotope ratios in modern brachiopods: Species-specific signals of biomineralization. Chem. Geol. 460, 15–24, https://doi.org/10.1016/j.chemgeo.2017.03.034 (2017).

  • 63.

    Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. & Oliveira, L. C. V. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth Planet. Sci. Lett. 253, 455–470, https://doi.org/10.1016/j.epsl.2006.11.009 (2007).

  • 64.

    Suan, G., Mattioli, E., Pittet, B., Mailliot, S. & Lécuyer, C. Evidence for major environmental perturbation prior to and during the Toarcian (Early Jurassic) oceanic anoxic event from the Lusitanian Basin, Portugal. Paleoceanography 23, PA1202, https://doi.org/10.1029/2007PA001459 (2008).

  • 65.

    Kosnik, M. A., Jablonski, D., Lockwood, R. & Novack-Gottshall, P. M. Quantifying molluscan body size in evolutionary and ecological analyses: maximizing the return on data-collection efforts. Palaios 21(6), 588–597, https://doi.org/10.2110/palo.2006.p06-012r (2006).

  • 66.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–137: https://CRAN.R-project.org/package=nlme (2018).

  • 67.

    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression, Second Edition. Thousand Oaks CA: Sage: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion (2011).

  • 68.

    McKinney, M. L. Classifying and analyzing evolutionary trends in Evolutionary trends (ed. McNamara, K. J.) 28–58 (Tucson, University of Arizona Press (1990).

  • 69.

    Hyndman, R. J. & Khandakar, Y. Automatic time series forecasting: the forecast package for R. J. Stat. Soft. 26(3), 1–22, http://www.jstatsoft.org/article/view/v027i03 (2008).

  • 70.

    Hyndman, R. et al. forecast: Forecasting functions for time series and linear models. R package version 8.5, http://pkg.robjhyndman.com/forecast (2019).

  • 71.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (2019).


  • Source: Ecology - nature.com

    Locally-adapted reproductive photoperiodism determines population vulnerability to climate change in burying beetles

    Ecosystem-wide metagenomic binning enables prediction of ecological niches from genomes