in

The Effects of Extreme Weather on Apple Quality

  • 1.

    Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529(7584), 84 (2016).

  • 2.

    Bi, X., House, L., Gao, Z. & Gmitter, F. Sensory evaluation and experimental auctions: Measuring willingness to pay for specific sensory attributes. American Journal of Agricultural Economics 94(2), 562–568 (2011).

    • Article
    • Google Scholar
  • 3.

    Houston, L. et al. Specialty fruit production in the Pacific Northwest: adaptation strategies for a changing climate. Climatic Change 146(1-2), 159–171 (2018).

  • 4.

    Zhang, H., Gallardo, R. K., McCluskey, J. J., & Kupferman, E. M. Consumers’ willingness to pay for treatment-induced quality attributes in Anjou pears. Journal of Agricultural and Resource Economics, 105–117 (2010)..

  • 5.

    Kawasaki, K. & Uchida, S. Quality Matters more than quantity: asymmetric temperature effects on crop yield and quality grade. American Journal of Agricultural Economics 98(4), 1195–1209 (2016).

    • Article
    • Google Scholar
  • 6.

    Rao, A. C. S., Smith, J. L., Jandhyala, V. K., Papendick, R. I. & Parr, J. F. Cultivar and climatic effects on the protein content of soft white winter wheat. Agronomy Journal 85(5), 1023–1028 (1993).

  • 7.

    Sugiura, T., Ogawa, H., Fukuda, N. & Moriguchi, T. Changes in the taste and textural attributes of apples in response to climate change. Scientific reports 3, 2418 (2013).

  • 8.

    Grunert, K. G. Food quality and safety: consumer perception and demand. European review of agricultural economics 32(3), 369–391 (2005).

    • Article
    • Google Scholar
  • 9.

    Asseng, S. et al. Climate change impact and adaptation for wheat protein. Global change biology 25(1), 155–173 (2019).

  • 10.

    van der Velde, M., Tubiello, F. N., Vrieling, A. & Bouraoui, F. Impacts of extreme weather on wheat and maize in France: evaluating regional crop simulations against observed data. Climatic change 113(3-4), 751–765 (2012).

  • 11.

    Kader A. 2002. Quality Parameters of Fresh-Cut Fruit and Vegetable Products. In Fresh-Cut Fruits and Vegetables, edited by Olusola Lamikanra. CRC Press.

  • 12.

    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proceedings of the National Academy of sciences 106(37), 15594–15598 (2009).

  • 13.

    Vitasse, Y., Schneider, L., Rixen, C., Christen, D. & Rebetez, M. Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agricultural and Forest Meteorology 248, 60–69 (2018).

  • 14.

    Vitasse, Y. & Rebetez, M. Unprecedented risk of spring frost damage in Switzerland and Germany in 2017. Climatic Change 149(2), 233–246 (2018).

  • 15.

    Tack, J., Lingenfelser, J. & Jagadish, S. K. Disaggregating sorghum yield reductions under warming scenarios exposes narrow genetic diversity in US breeding programs. Proceedings of the National Academy of Sciences 114(35), 9296–9301 (2017).

  • 16.

    Tack, J., Barkley, A. & Nalley, L. L. Effect of warming temperatures on US wheat yields. Proceedings of the National Academy of Sciences 112(22), 6931–6936 (2015).

  • 17.

    Yue, C., Alfnes, F. & Jensen, H. H. Discounting spotted apples: Investigating consumers’ willingness to accept cosmetic damage in an organic product. Journal of Agricultural and Applied Economics 41(1), 29–46 (2009).

    • Article
    • Google Scholar
  • 18.

    Rodrigo, J. Spring frosts in deciduous fruit trees—morphological damage and flower hardiness. Scientia Horticulturae 85(3), 155–173 (2000).

    • Article
    • Google Scholar
  • 19.

    Seo, S. N. & Mendelsohn, R. An analysis of crop choice: Adapting to climate change in South American farms. Ecological economics 67(1), 109–116 (2008).

    • Article
    • Google Scholar
  • 20.

    Troost, C. & Berger, T. Dealing with uncertainty in agent-based simulation: farm-level modeling of adaptation to climate change in Southwest Germany. American Journal of Agricultural Economics 97(3), 833–854 (2014).

    • Article
    • Google Scholar
  • 21.

    Kolstad, C. D. & Moore, F. C. Estimating the economic impacts of climate change using weather observations. Review of Environmental Economics and Policy 14(1), 1–24 (2020).

    • Article
    • Google Scholar
  • 22.

    Blanc, E. & Schlenker, W. The use of panel models in assessments of climate impacts on agriculture. Review of Environmental Economics and Policy 11(2), 258–279 (2017).

    • Article
    • Google Scholar
  • 23.

    Dalhaus, T. & Finger, R. Can gridded precipitation data and phenological observations reduce basis risk of weather index–based insurance? Weather, Climate, and Society 8(4), 409–419 (2016).

    • Article
    • Google Scholar
  • 24.

    Dalhaus, T., Musshoff, O. & Finger, R. Phenology information contributes to reduce temporal basis risk in agricultural weather index insurance. Scientific reports 8(1), 1–10 (2018).

  • 25.

    Vroege, W., Dalhaus, T. & Finger, R. Index insurances for grasslands–A review for Europe and North-America. Agricultural systems 168, 101–111 (2019).

    • Article
    • Google Scholar
  • 26.

    Asseng, S. et al. Rising temperatures reduce global wheat production. Nature climate change 5(2), 143 (2015).

  • 27.

    Chmielewski, F. M., Müller, A. & Bruns, E. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agricultural and Forest Meteorology 121(1), 69–78 (2004).

  • 28.

    Luedeling, E., Guo, L., Dai, J., Leslie, C. & Blanke, M. M. Differential responses of trees to temperature variation during the chilling and forcing phases. Agricultural and forest meteorology 181, 33–42 (2013).

  • 29.

    Menzel, A. et al. European phenological response to climate change matches the warming pattern. Global Change Biology 12(10), 1969–1976 (2006).

  • 30.

    Legave, J. M. et al. A comprehensive overview of the spatial and temporal variability of apple bud dormancy release and blooming phenology in Western Europe. International Journal of Biometeorology 57(2), 317–331 (2013).

  • 31.

    Blanke, M. & Kunz, A. Effects of climate change on pome fruit phenology and precipitation. Acta Hort. (ISHS) 922, 381–386 (2010).

    • Google Scholar
  • 32.

    Eccel, E., Rea, R., Caffarra, A. & Crisci, A. Risk of spring frost to apple production under future climate scenarios: the role of phenological acclimation. International journal of biometeorology 53(3), 273–286 (2009).

  • 33.

    Blanke, M. & Kunz, A. Einfluss rezenter Klimaveränderungen auf die Phänologie bei Kernobst am Standort Klein-Altendorf–anhand 50-jähriger Aufzeichnungen. Erwerbs-Obstbau 51(3), 101–114 (2009).

    • Article
    • Google Scholar
  • 34.

    Stöckle, C. O. et al. Assessment of climate change impact on Eastern Washington agriculture. Climatic Change 102(1), 77–102 (2010).

  • 35.

    Fuhrer, J., Smith, P. & Gobiet, A. Implications of climate change scenarios for agriculture in alpine regions—A case study in the Swiss Rhone catchment. Science of the Total Environment 493, 1232–1241 (2014).

  • 36.

    Dalhaus, T., Blanke, M. M., Bravin, E., Dietiker, D., & Finger, R. Spring Frost in Apple Orchards: Quality Effects can Outweigh Quantity Effects. Paper Presented at the 2019 Annual Meeting of the Agricultural & Applied Economics Association, July 21-23, Atlanta, Georgia (2019).

  • 37.

    Cameron, A. C., Gelbach, J. B. & Miller, D. L. Robust inference with multiway clustering. Journal of Business & Economic Statistics 29(2), 238–249 (2011).

  • 38.

    Mouron, P., Nemecek, T., Scholz, R. W. & Weber, O. Management influence on environmental impacts in an apple production system on Swiss fruit farms: combining life cycle assessment with statistical risk assessment. Agriculture, Ecosystems & Environment 114(2), 311–322 (2006).

    • Article
    • Google Scholar
  • 39.

    Billor, N., Hadi, A. S. & Velleman, P. F. BACON: blocked adaptive computationally efficient outlier nominators. Computational Statistics & Data Analysis 34(3), 279–298 (2000).

  • 40.

    Rea, R. & Eccel, E. Phenological models for blooming of apple in a mountainous region. International Journal of Biometeorology 51(1), 1–16 (2006).

  • 41.

    Cesaraccio, C., Spano, D., Snyder, R. L. & Duce, P. Chilling and forcing model to predict bud-burst of crop and forest species. Agricultural and Forest Meteorology 126(1), 1–13 (2004).

  • 42.

    Frei, C. Interpolation of temperature in a mountainous region using nonlinear profiles and non‐Euclidean distances. International Journal of Climatology 34(5), 1585–1605 (2014).

  • 43.

    Snyder, R. L. Hand calculating degree days. Agricultural and Forest Meteorology 35, 353–58 (1985).

  • 44.

    Racsko, J. & Schrader, L. E. Sunburn of apple fruit: Historical background, recent advances and future perspectives. Critical reviews in plant sciences 31(6), 455–504 (2012).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Climate knowledge for everyone

    Susan Solomon earns Killian Award, MIT’s highest faculty honor