in

The fingerprints of climate warming on cereal crops phenology and adaptation options

  • 1.

    Sarwar, M. H., Sarwar, M. F., Sarwar, M., Qadri, N. A. & Moghal, S. The importance of cereals (Poaceae: Gramineae) nutrition in human health: a review. J. Cereals Oilseeds 4, 32–35 (2013).

    Article  Google Scholar 

  • 2.

    Ranjan, R. & Yadav, R. Targeting nitrogen use efficiency for sustained production of cereal crops. J. Plant Nutr. 42, 1086–1113. https://doi.org/10.1080/01904167.2019.1589497 (2019).

    CAS  Article  Google Scholar 

  • 3.

    Sofi, F. et al. Health and nutrition studies related to cereal biodiversity: a participatory multi-actor literature review approach. Nutrients 10, 1207 (2018).

    Article  Google Scholar 

  • 4.

    Stewart, B. A. & Lal, R. In Advances in Agronomy Vol. 151 (ed Donald L. Sparks) 1–44 (Academic Press, 2018).

  • 5.

    Sadras, V. et al. In Advances in Agronomy Vol. 163 (ed Donald L. Sparks) 153–177 (Academic Press, 2020).

  • 6.

    Yu, S. & Tian, L. Breeding major cereal grains through the lens of nutrition sensitivity. Mol. Plant 11, 23–30. https://doi.org/10.1016/j.molp.2017.08.006 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 7.

    Wang, J., Vanga, S., Saxena, R., Orsat, V. & Raghavan, V. Effect of climate change on the yield of cereal crops: a review. Climate 6, 41 (2018).

    Article  Google Scholar 

  • 8.

    Chmielewski, F.-M., Müller, A. & Bruns, E. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric. For. Meteorol. 121, 69–78. https://doi.org/10.1016/S0168-1923(03)00161-8 (2004).

    ADS  Article  Google Scholar 

  • 9.

    Price, R. K. & Welch, R. W. In Encyclopedia of Human Nutrition (3rd Edn) (ed Benjamin Caballero) 307–316 (Academic Press, 2013).

  • 10.

    McKevith, B. Nutritional aspects of cereals. Nutr. Bull. 29, 111–142. https://doi.org/10.1111/j.1467-3010.2004.00418.x (2004).

    Article  Google Scholar 

  • 11.

    Wang, H. L. et al. Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agric. For. Meteorol. 148, 1242–1251. https://doi.org/10.1016/j.agrformet.2008.03.003 (2008).

    ADS  Article  Google Scholar 

  • 12.

    Chen, X. et al. Does any phenological event defined by remote sensing deserve particular attention? An examination of spring phenology of winter wheat in Northern China. Ecol. Ind. 116, 106456. https://doi.org/10.1016/j.ecolind.2020.106456 (2020).

    Article  Google Scholar 

  • 13.

    Li, Y., Hou, R. & Tao, F. Interactive effects of different warming levels and tillage managements on winter wheat growth, physiological processes, grain yield and quality in the North China Plain. Agr. Ecosyst. Environ. 295, 106923. https://doi.org/10.1016/j.agee.2020.106923 (2020).

    CAS  Article  Google Scholar 

  • 14.

    Li, Z. et al. Response of maize phenology to climate warming in Northeast China between 1990 and 2012. Reg. Environ. Change 14, 39–48. https://doi.org/10.1007/s10113-013-0503-x (2014).

    CAS  Article  Google Scholar 

  • 15.

    Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T. & Woznicki, S. A. Climate change and livestock: impacts, adaptation, and mitigation. Clim. Risk Manag. 16, 145–163. https://doi.org/10.1016/j.crm.2017.02.001 (2017).

    Article  Google Scholar 

  • 16.

    Akram, R. et al. In Advances in Rice Research for Abiotic Stress Tolerance (eds Hasanuzzaman, M. et al.) 69–85 (Woodhead Publishing, 2019).

  • 17.

    Farooq, M., Hussain, M., Wakeel, A. & Siddique, K. H. M. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 35, 461–481. https://doi.org/10.1007/s13593-015-0287-0 (2015).

    CAS  Article  Google Scholar 

  • 18.

    Farooq, M., Hussain, M. & Siddique, K. H. M. Drought stress in wheat during flowering and grain-filling periods. Crit. Rev. Plant Sci. 33, 331–349. https://doi.org/10.1080/07352689.2014.875291 (2014).

    CAS  Article  Google Scholar 

  • 19.

    Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29, 185–212. https://doi.org/10.1051/agro:2008021 (2009).

    Article  Google Scholar 

  • 20.

    Hussain, J., Khaliq, T., Ahmad, A., Akhter, J. & Asseng, S. Wheat responses to climate change and its adaptations: a focus on arid and semi-arid environment. Int. J. Environ. Res. https://doi.org/10.1007/s41742-018-0074-2 (2018).

    Article  Google Scholar 

  • 21.

    Hussain, M. et al. In Advances in Agronomy Vol. 148 (ed Donald L. Sparks) 231–287 (Academic Press, 2018).

  • 22.

    Dyer, G. A., López-Feldman, A., Yúnez-Naude, A. & Taylor, J. E. Genetic erosion in maize’s center of origin. Proc. Natl. Acad. Sci. 111, 14094–14099. https://doi.org/10.1073/pnas.1407033111 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 23.

    Nicholson, S. E., Funk, C. & Fink, A. H. Rainfall over the African continent from the 19th through the 21st century. Global Planet. Change 165, 114–127. https://doi.org/10.1016/j.gloplacha.2017.12.014 (2018).

    ADS  Article  Google Scholar 

  • 24.

    Pour, S. H., Wahab, A. K. A. & Shahid, S. Spatiotemporal changes in aridity and the shift of drylands in Iran. Atmos. Res. 233, 104704. https://doi.org/10.1016/j.atmosres.2019.104704 (2020).

    Article  Google Scholar 

  • 25.

    Sadras, V. O. & Monzon, J. P. Modelled wheat phenology captures rising temperature trends: shortened time to flowering and maturity in Australia and Argentina. Field Crops Res. 99, 136–146. https://doi.org/10.1016/j.fcr.2006.04.003 (2006).

    Article  Google Scholar 

  • 26.

    Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x (2006).

    ADS  Article  Google Scholar 

  • 27.

    Liu, Y., Qin, Y., Ge, Q., Dai, J. & Chen, Q. Reponses and sensitivities of maize phenology to climate change from 1981 to 2009 in Henan Province, China. J. Geogr. Sci. 27, 1072–1084. https://doi.org/10.1007/s11442-017-1422-4 (2017).

    Article  Google Scholar 

  • 28.

    Liu, L. et al. Uncertainty in wheat phenology simulation induced by cultivar parameterization under climate warming. Eur. J. Agron. 94, 46–53. https://doi.org/10.1016/j.eja.2017.12.001 (2018).

    Article  Google Scholar 

  • 29.

    Ye, Z. et al. Impacts of 1.5°C and 2.0°C global warming above pre-industrial on potential winter wheat production of China. Eur. J. Agron. 120, 126149. https://doi.org/10.1016/j.eja.2020.126149 (2020).

    Article  Google Scholar 

  • 30.

    Kawakita, S., Takahashi, H. & Moriya, K. Prediction and parameter uncertainty for winter wheat phenology models depend on model and parameterization method differences. Agric. For. Meteorol. 290, 107998. https://doi.org/10.1016/j.agrformet.2020.107998 (2020).

    ADS  Article  Google Scholar 

  • 31.

    Ahmed, K., Shabbir, G., Ahmed, M. & Shah, K. N. Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Sci. Total Environ. 729, 139082. https://doi.org/10.1016/j.scitotenv.2020.139082 (2020).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Ahmed, M., Aslam, M. A., Fayyaz-Ul, H., Hayat, R. & Ahmad, S. Biochemical, physiological and agronomic response of wheat to changing climate of rainfed Pakistan. Pak. J. Bot 51, 535–551. https://doi.org/10.30848/PJB2019-2(10) (2019).

    CAS  Article  Google Scholar 

  • 33.

    Tamburino, L., Bravo, G., Clough, Y. & Nicholas, K. A. From population to production: 50 years of scientific literature on how to feed the world. Global Food Secur. 24, 100346. https://doi.org/10.1016/j.gfs.2019.100346 (2020).

    Article  Google Scholar 

  • 34.

    Gomez-Zavaglia, A., Mejuto, J. C. & Simal-Gandara, J. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 134, 109256. https://doi.org/10.1016/j.foodres.2020.109256 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Wreford, A. & Topp, C. F. E. Impacts of climate change on livestock and possible adaptations: a case study of the United Kingdom. Agric. Syst. 178, 102737. https://doi.org/10.1016/j.agsy.2019.102737 (2020).

    Article  Google Scholar 

  • 36.

    Hu, Q., Weiss, A., Feng, S. & Baenziger, P. S. Earlier winter wheat heading dates and warmer spring in the U.S. Great Plains. Agric. For. Meteorol. 135, 284–290. https://doi.org/10.1016/j.agrformet.2006.01.001 (2005).

    ADS  Article  Google Scholar 

  • 37.

    He, L., Jin, N. & Yu, Q. Impacts of climate change and crop management practices on soybean phenology changes in China. Sci. Total Environ. 707, 135638. https://doi.org/10.1016/j.scitotenv.2019.135638 (2020).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 38.

    Tao, F., Yokozawa, M., Liu, J. & Zhang, Z. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Climate Res. 38, 83–94 (2008).

    ADS  Article  Google Scholar 

  • 39.

    Estrella, N., Sparks, T. H. & Menzel, A. Effects of temperature, phase type and timing, location, and human density on plant phenological responses in Europe. Climate Res. 39, 235–248 (2009).

    ADS  Article  Google Scholar 

  • 40.

    Ahmed, M., Fayyaz-ul-Hassan & Ahmad, S. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Claudio O. Stockle) 91–111 (Springer International Publishing, 2017).

  • 41.

    García-Mozo, H., Mestre, A. & Galán, C. Phenological trends in southern Spain: a response to climate change. Agric. For. Meteorol. 150, 575–580. https://doi.org/10.1016/j.agrformet.2010.01.023 (2010).

    ADS  Article  Google Scholar 

  • 42.

    Wu, D. et al. Measured phenology response of unchanged crop varieties to long-term historical climate change. Int. J. Plant Prod. 13, 47–58. https://doi.org/10.1007/s42106-018-0033-z (2019).

    Article  Google Scholar 

  • 43.

    Sujetovienė, G. et al. Climate-change-related long-term historical and projected changes to spring barley phenological development in Lithuania. J. Agric. Sci. 156, 1061–1069. https://doi.org/10.1017/S0021859618000904 (2019).

    Article  Google Scholar 

  • 44.

    Ahmad, A. et al. In Handbook of Climate Change and Agroecosystems Vol. 3 (eds Rosenzweig, C. & Hillel, D.) 219–258 (World Scientific 2015).

  • 45.

    Tsimba, R., Edmeades, G. O., Millner, J. P. & Kemp, P. D. The effect of planting date on maize: phenology, thermal time durations and growth rates in a cool temperate climate. Field Crops Res. 150, 145–155. https://doi.org/10.1016/j.fcr.2013.05.021 (2013).

    Article  Google Scholar 

  • 46.

    Bai, H., Tao, F., Xiao, D., Liu, F. & Zhang, H. Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades. Clim. Change 135, 539–553. https://doi.org/10.1007/s10584-015-1579-8 (2016).

    ADS  Article  Google Scholar 

  • 47.

    Shim, D., Lee, K.-J. & Lee, B.-W. Response of phenology- and yield-related traits of maize to elevated temperature in a temperate region. Crop J. 5, 305–316. https://doi.org/10.1016/j.cj.2017.01.004 (2017).

    Article  Google Scholar 

  • 48.

    Yang, J. et al. Yield-maturity relationships of summer maize from 2003 to 2017 in the Huanghuaihai plain of China. Sci. Rep. 9, 11417. https://doi.org/10.1038/s41598-019-47561-2 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Teller, A. S. Moving the conversation on climate change and inequality to the local: socio-ecological vulnerability in agricultural Tanzania. Soc. Dev. 2, 25–50. https://doi.org/10.1525/sod.2016.2.1.25 (2016).

    Article  Google Scholar 

  • 50.

    Tao, F., Zhang, S. & Zhang, Z. Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics. Eur. J. Agron. 43, 201–212. https://doi.org/10.1016/j.eja.2012.07.005 (2012).

    Article  Google Scholar 

  • 51.

    Shi, W., Wang, M. & Liu, Y. Crop yield and production responses to climate disasters in China. Sci. Total Environ. 750, 141147. https://doi.org/10.1016/j.scitotenv.2020.141147 (2021).

    ADS  CAS  Article  Google Scholar 

  • 52.

    Siebert, S. & Ewert, F. Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. Agric. For. Meteorol. 152, 44–57. https://doi.org/10.1016/j.agrformet.2011.08.007 (2012).

    ADS  Article  Google Scholar 

  • 53.

    Porter, J. R. & Gawith, M. Temperatures and the growth and development of wheat: a review. Eur. J. Agron. 10, 23–36. https://doi.org/10.1016/S1161-0301(98)00047-1 (1999).

    Article  Google Scholar 

  • 54.

    McMaster, G. S. & Wilhelm, W. W. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol. 87, 291–300. https://doi.org/10.1016/S0168-1923(97)00027-0 (1997).

    ADS  Article  Google Scholar 

  • 55.

    Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365. https://doi.org/10.1016/j.tree.2007.04.003 (2007).

    Article  PubMed  Google Scholar 

  • 56.

    Xiao, D. et al. Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain. Theor. Appl. Climatol. 124, 653–661. https://doi.org/10.1007/s00704-015-1450-x (2016).

    ADS  Article  Google Scholar 

  • 57.

    Craufurd, P. Q. & Wheeler, T. R. Climate change and the flowering time of annual crops. J. Exp. Bot. 60, 2529–2539. https://doi.org/10.1093/jxb/erp196 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 58.

    van Bussel, L. G. J., Ewert, F. & Leffelaar, P. A. Effects of data aggregation on simulations of crop phenology. Agric. Ecosyst. Environ. 142, 75–84. https://doi.org/10.1016/j.agee.2010.03.019 (2011).

    Article  Google Scholar 

  • 59.

    van Oort, P. A. J., Zhang, T., de Vries, M. E., Heinemann, A. B. & Meinke, H. Correlation between temperature and phenology prediction error in rice (Oryza sativa L.). Agric. For. Meteorol. 151, 1545–1555. https://doi.org/10.1016/j.agrformet.2011.06.012 (2011).

    ADS  Article  Google Scholar 

  • 60.

    Rezaei, E. E., Siebert, S., Hüging, H. & Ewert, F. Climate change effect on wheat phenology depends on cultivar change. Sci. Rep. 8, 4891. https://doi.org/10.1038/s41598-018-23101-2 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Croitoru, A.-E., Holobaca, I.-H., Lazar, C., Moldovan, F. & Imbroane, A. Air temperature trend and the impact on winter wheat phenology in Romania. Clim. Change 111, 393–410. https://doi.org/10.1007/s10584-011-0133-6 (2012).

    ADS  Article  Google Scholar 

  • 62.

    Hussain, M., Shabir, G., Farooq, M., Jabran, K. & Farooq, S. Developmental and phenological responses of wheat to sowing dates. Pak. J. Agri. Sci 49, 459–468 (2012).

    Google Scholar 

  • 63.

    Zhang, S. & Tao, F. Modeling the response of rice phenology to climate change and variability in different climatic zones: comparisons of five models. Eur. J. Agron. 45, 165–176. https://doi.org/10.1016/j.eja.2012.10.005 (2013).

    Article  Google Scholar 

  • 64.

    Yue, Y. et al. Prediction of maize growth stages based on deep learning. Comput. Electron. Agric. 172, 105351. https://doi.org/10.1016/j.compag.2020.105351 (2020).

    Article  Google Scholar 

  • 65.

    Luo, Q. Temperature thresholds and crop production: a review. Clim. Change 109, 583–598. https://doi.org/10.1007/s10584-011-0028-6 (2011).

    ADS  Article  Google Scholar 

  • 66.

    Ramirez-Villegas, J., Challinor, A. J., Thornton, P. K. & Jarvis, A. Implications of regional improvement in global climate models for agricultural impact research. Environ. Res. Lett. 8, 024018. https://doi.org/10.1088/1748-9326/8/2/024018 (2013).

    ADS  Article  Google Scholar 

  • 67.

    Luo, Q., Bange, M. & Clancy, L. Cotton crop phenology in a new temperature regime. Ecol. Model. 285, 22–29. https://doi.org/10.1016/j.ecolmodel.2014.04.018 (2014).

    Article  Google Scholar 

  • 68.

    Pulatov, B., Linderson, M.-L., Hall, K. & Jönsson, A. M. Modeling climate change impact on potato crop phenology, and risk of frost damage and heat stress in northern Europe. Agric. For. Meteorol. 214–215, 281–292. https://doi.org/10.1016/j.agrformet.2015.08.266 (2015).

    ADS  Article  Google Scholar 

  • 69.

    Hatfield, J. L. & Dold, C. Climate change impacts on corn phenology and productivity. Corn: Production and Human Health in Changing Climate, 95 (2018).

  • 70.

    Zhang, T., Huang, Y. & Yang, X. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Glob. Change Biol. 19, 563–570. https://doi.org/10.1111/gcb.12057 (2013).

    ADS  Article  Google Scholar 

  • 71.

    Lin, Y. et al. Potential impacts of climate change and adaptation on maize in northeast China. Agron. J. 109, 1476–1490 (2017).

    Article  Google Scholar 

  • 72.

    Wang, N. et al. Modelling maize phenology, biomass growth and yield under contrasting temperature conditions. Agric. For. Meteorol. 250–251, 319–329. https://doi.org/10.1016/j.agrformet.2018.01.005 (2018).

    ADS  Article  Google Scholar 

  • 73.

    Ge, Q., Wang, H., Rutishauser, T. & Dai, J. Phenological response to climate change in China: a meta-analysis. Glob. Change Biol. 21, 265–274 (2015).

    ADS  Article  Google Scholar 

  • 74.

    Srivastava, R. K., Panda, R. K. & Chakraborty, A. Assessment of climate change impact on maize yield and yield attributes under different climate change scenarios in eastern India. Ecol. Ind. 120, 106881. https://doi.org/10.1016/j.ecolind.2020.106881 (2021).

    Article  Google Scholar 

  • 75.

    Gordo, O. & Sanz, J. J. Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146, 484–495. https://doi.org/10.1007/s00442-005-0240-z (2005).

    ADS  Article  PubMed  Google Scholar 

  • 76.

    Brown, M. E., de Beurs, K. M. & Marshall, M. Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26years. Remote Sens. Environ. 126, 174–183. https://doi.org/10.1016/j.rse.2012.08.009 (2012).

    ADS  Article  Google Scholar 

  • 77.

    Kim, Y.-U. & Lee, B.-W. Earlier planting offsets the adverse effect of global warming on spring potato in South Korea. Sci. Total Environ. 742, 140667. https://doi.org/10.1016/j.scitotenv.2020.140667 (2020).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 78.

    Baum, M. E., Licht, M. A., Huber, I. & Archontoulis, S. V. Impacts of climate change on the optimum planting date of different maize cultivars in the central US Corn Belt. Eur. J. Agron. 119, 126101. https://doi.org/10.1016/j.eja.2020.126101 (2020).

    Article  Google Scholar 

  • 79.

    Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612. https://doi.org/10.1111/gcb.15000 (2020).

    ADS  Article  Google Scholar 

  • 80.

    Menzel, A. Trends in phenological phases in Europe between 1951 and 1996. Int. J. Biometeorol. 44, 76–81. https://doi.org/10.1007/s004840000054 (2000).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 81.

    Oteros, J., García-Mozo, H., Botey, R., Mestre, A. & Galán, C. Variations in cereal crop phenology in Spain over the last twenty-six years (1986–2012). Clim. Change 130, 545–558. https://doi.org/10.1007/s10584-015-1363-9 (2015).

    ADS  CAS  Article  Google Scholar 

  • 82.

    Wang, Y., Luo, Y. & Shafeeque, M. Interpretation of vegetation phenology changes using daytime and night-time temperatures across the Yellow River Basin, China. Sci. Total Environ. 693, 133553. https://doi.org/10.1016/j.scitotenv.2019.07.359 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 83.

    Moriondo, M. & Bindi, M. Impact of climate change on the phenology of typical Mediterranean crops. Italian J. Agrometeorol. 3, 5–12 (2007).

    Google Scholar 

  • 84.

    Anwar, M. R. et al. Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia. Agric. Syst. 132, 133–144. https://doi.org/10.1016/j.agsy.2014.09.010 (2015).

    ADS  Article  Google Scholar 

  • 85.

    Jackson, R. B. et al. Global energy growth is outpacing decarbonization. Environ. Res. Lett. 13, 120401. https://doi.org/10.1088/1748-9326/aaf303 (2018).

    ADS  CAS  Article  Google Scholar 

  • 86.

    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194. https://doi.org/10.5194/essd-10-2141-2018 (2018).

    ADS  Article  Google Scholar 

  • 87.

    Balch, J. K. et al. Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010). Philos. Trans. R. Soc. B Biol. Sci. 371, 20150177. https://doi.org/10.1098/rstb.2015.0177 (2016).

    Article  Google Scholar 

  • 88.

    Ahmad, S. et al. Climate warming and management impact on the change of phenology of the rice-wheat cropping system in Punjab, Pakistan. Field Crops Res. 230, 46–61. https://doi.org/10.1016/j.fcr.2018.10.008 (2019).

    Article  Google Scholar 

  • 89.

    Ahmad, S. et al. Application of DSSAT Model for sowing date management of C 4 summer cereals for fodder and grain crops under irrigated arid environment. Pakistan J. Life Soc. Sci. 14 (2016).

  • 90.

    Hatfield, J. L. & Prueger, J. H. Temperature extremes: effect on plant growth and development. Weather Clim. Extremes 10, 4–10. https://doi.org/10.1016/j.wace.2015.08.001 (2015).

    Article  Google Scholar 

  • 91.

    Aslam, M. A. et al. Can growing degree days and photoperiod predict spring wheat phenology?. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2017.00057 (2017).

    Article  Google Scholar 

  • 92.

    Zhang, L., Zhang, Z., Luo, Y., Cao, J. & Li, Z. Optimizing genotype-environment-management interactions for maize farmers to adapt to climate change in different agro-ecological zones across China. Sci. Total Environ. 728, 138614. https://doi.org/10.1016/j.scitotenv.2020.138614 (2020).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 93.

    Tryjanowski, P. et al. Changing phenology of potato and of the treatment for its major pest (colorado potato beetle)—a long-term analysis. Am. J. Potato Res. https://doi.org/10.1007/s12230-017-9611-3 (2017).

    Article  Google Scholar 

  • 94.

    Ahmad, S. et al. Quantification of climate warming and crop management impacts on cotton phenology. Plants (Basel) 6, 7. https://doi.org/10.3390/plants6010007 (2017).

    Article  Google Scholar 

  • 95.

    Huang, J. & Ji, F. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions. Int. J. Biometeorol. 59, 877–888. https://doi.org/10.1007/s00484-014-0904-7 (2015).

    ADS  Article  PubMed  Google Scholar 

  • 96.

    Wang, Z. et al. Response of cotton phenology to climate change on the North China Plain from 1981 to 2012. Sci. Rep. 7, 6628. https://doi.org/10.1038/s41598-017-07056-4 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 97.

    Srivastava, A., NareshKumar, S. & Aggarwal, P. K. Assessment on vulnerability of sorghum to climate change in India. Agric. Ecosyst. Environ. 138, 160–169. https://doi.org/10.1016/j.agee.2010.04.012 (2010).

    Article  Google Scholar 

  • 98.

    Sultan, B. et al. Robust features of future climate change impacts on sorghum yields in West Africa. Environ. Res. Lett. 9, 104006. https://doi.org/10.1088/1748-9326/9/10/104006 (2014).

    ADS  CAS  Article  Google Scholar 

  • 99.

    Shew, A. M., Tack, J. B., Nalley, L. L. & Chaminuka, P. Yield reduction under climate warming varies among wheat cultivars in South Africa. Nat. Commun. 11, 4408. https://doi.org/10.1038/s41467-020-18317-8 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 100.

    Sonkar, G. et al. Vulnerability of Indian wheat against rising temperature and aerosols. Environ. Pollut. 254, 112946. https://doi.org/10.1016/j.envpol.2019.07.114 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 101.

    Fatima, Z. et al. Quantification of climate warming and crop management impacts on phenology of pulses-based cropping systems. Int. J. Plant Prod. https://doi.org/10.1007/s42106-020-00112-6 (2020).

    Article  Google Scholar 

  • 102.

    Liu, Y., Qin, Y., Wang, H., Lv, S. & Ge, Q. Trends in maize (Zea mays L.) phenology and sensitivity to climate factors in China from 1981 to 2010. Int J Biometeorol 64, 461–470. https://doi.org/10.1007/s00484-019-01832-9 (2020).

    Article  PubMed  Google Scholar 

  • 103.

    Zhou, X. et al. Legacy effect of spring phenology on vegetation growth in temperate China. Agric. For. Meteorol. 281, 107845. https://doi.org/10.1016/j.agrformet.2019.107845 (2020).

    ADS  Article  Google Scholar 

  • 104.

    Das, S., Kumar, A., Barman, M., Pal, S. & Bandopadhyay, P. In Agronomic Crops: Volume 3: Stress Responses and Tolerance (ed. Hasanuzzaman, M.) 13–28 (Springer Singapore, 2020).

  • 105.

    Xiao, D., Liu, D. L., Wang, B., Feng, P. & Waters, C. Designing high-yielding maize ideotypes to adapt changing climate in the North China Plain. Agric. Syst. 181, 102805. https://doi.org/10.1016/j.agsy.2020.102805 (2020).

    Article  Google Scholar 

  • 106.

    Liu, Y. et al. Impacts of 1.5 and 2.0°C global warming on rice production across China. Agric. For. Meteorol. 284, 107900. https://doi.org/10.1016/j.agrformet.2020.107900 (2020).

    ADS  Article  Google Scholar 

  • 107.

    Rani, B. A. & Maragatham, N. Effect of elevated temperature on rice phenology and yield. Indian J. Sci. Technol. 6, 5095–5097 (2013).

    Google Scholar 

  • 108.

    Shrestha, S. et al. Phenological responses of upland rice grown along an altitudinal gradient. Environ. Exp. Bot. 89, 1–10. https://doi.org/10.1016/j.envexpbot.2012.12.007 (2013).

    Article  Google Scholar 

  • 109.

    Abbas, G. et al. Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agric. For. Meteorol. 247, 42–55. https://doi.org/10.1016/j.agrformet.2017.07.012 (2017).

    ADS  Article  Google Scholar 

  • 110.

    Estrella, N., Sparks, T. H. & Menzel, A. Trends and temperature response in the phenology of crops in Germany. Glob. Change Biol. 13, 1737–1747. https://doi.org/10.1111/j.1365-2486.2007.01374.x (2007).

    ADS  Article  Google Scholar 

  • 111.

    Li, K. et al. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain. Int. J. Biometeorol. 60, 21–32. https://doi.org/10.1007/s00484-015-1002-1 (2016).

    ADS  Article  PubMed  Google Scholar 

  • 112.

    He, D. et al. Uncertainty in canola phenology modelling induced by cultivar parameterization and its impact on simulated yield. Agric. For. Meteorol. 232, 163–175. https://doi.org/10.1016/j.agrformet.2016.08.013 (2017).

    ADS  Article  Google Scholar 

  • 113.

    Wei, W., Wu, W., Li, Z., Yang, P. & Zhou, Q. Selecting the optimal ndvi time-series reconstruction technique for crop phenology detection. Intell. Autom. Soft Comput. 22, 237–247. https://doi.org/10.1080/10798587.2015.1095482 (2016).

    Article  Google Scholar 

  • 114.

    Chakraborty, A., Das, P. K., Sai, M. V. R. S. & Behera, G. Spatial pattern of temporal trend of crop phenology matrices over india using timeseries gimms NDVI data (19826ndash;2006). ISPRS Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 3820, 113–118 (2012).

    Article  Google Scholar 

  • 115.

    Komal, C., Shi, W., Boori, M. S. & Corgne, S. Agriculture phenology monitoring using NDVI time series based on remote sensing satellites: a case study of Guangdong, China. Opt. Mem. Neural Netw. 28, 204–214. https://doi.org/10.3103/S1060992X19030093 (2019).

    Article  Google Scholar 

  • 116.

    Liu, Y., Chen, Q., Ge, Q. & Dai, J. Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010. Sci. China Earth Sci. 61, 1088–1097. https://doi.org/10.1007/s11430-017-9149-0 (2018).

    ADS  Article  Google Scholar 

  • 117.

    Xiao, D. et al. Observed changes in winter wheat phenology in the North China Plain for 1981–2009. Int. J. Biometeorol. 57, 275–285. https://doi.org/10.1007/s00484-012-0552-8 (2013).

    ADS  Article  PubMed  Google Scholar 

  • 118.

    Hossain, A., da Silva Teixeira, J. A., Lozovskaya, M. V. & Zvolinsky, V. P. High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: I. Phenology and growth. Saudi J. Biol. Sci. 19, 473–487. https://doi.org/10.1016/j.sjbs.2012.07.005 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 119.

    Martínez-Núñez, M. et al. The phenological growth stages of different amaranth species grown in restricted spaces based in BBCH code. South African J. Bot. 124, 436–443. https://doi.org/10.1016/j.sajb.2019.05.035 (2019).

    Article  Google Scholar 

  • 120.

    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. 114, 9326–9331. https://doi.org/10.1073/pnas.1701762114 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 121.

    Li, T. et al. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob. Change Biol. 21, 1328–1341. https://doi.org/10.1111/gcb.12758 (2015).

    ADS  CAS  Article  Google Scholar 

  • 122.

    Subash, N. & Ram Mohan, H. S. Evaluation of the impact of climatic trends and variability in rice–wheat system productivity using Cropping System Model DSSAT over the Indo-Gangetic Plains of India. Agric. For. Meteorol. 164, 71–81. https://doi.org/10.1016/j.agrformet.2012.05.008 (2012).

    ADS  Article  Google Scholar 

  • 123.

    Tian, D. et al. Does decadal climate variation influence wheat and maize production in the southeast USA?. Agric. For. Meteorol. 204, 1–9. https://doi.org/10.1016/j.agrformet.2015.01.013 (2015).

    ADS  Article  Google Scholar 

  • 124.

    Quiring, S. M. & Legates, D. R. Application of CERES-Maize for within-season prediction of rainfed corn yields in Delaware, USA. Agric. For. Meteorol. 148, 964–975. https://doi.org/10.1016/j.agrformet.2008.01.009 (2008).

    ADS  Article  Google Scholar 

  • 125.

    Blecharczyk, A., Sawinska, Z., Małecka, I., Sparks, T. H. & Tryjanowski, P. The phenology of winter rye in Poland: an analysis of long-term experimental data. Int. J. Biometeorol. 60, 1341–1346. https://doi.org/10.1007/s00484-015-1127-2 (2016).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 126.

    Luo, Q., O’Leary, G., Cleverly, J. & Eamus, D. Effectiveness of time of sowing and cultivar choice for managing climate change: wheat crop phenology and water use efficiency. Int. J. Biometeorol. 62, 1049–1061. https://doi.org/10.1007/s00484-018-1508-4 (2018).

    ADS  Article  PubMed  Google Scholar 

  • 127.

    He, L. et al. Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agric. For. Meteorol. 200, 135–143. https://doi.org/10.1016/j.agrformet.2014.09.011 (2015).

    ADS  Article  Google Scholar 

  • 128.

    Wang, J., Wang, E., Feng, L., Yin, H. & Yu, W. Phenological trends of winter wheat in response to varietal and temperature changes in the North China Plain. Field Crops Res. 144, 135–144. https://doi.org/10.1016/j.fcr.2012.12.020 (2013).

    CAS  Article  Google Scholar 

  • 129.

    Zheng, Z., Cai, H., Wang, Z. & Wang, X. Simulation of climate change impacts on phenology and production of winter wheat in Northwestern China using CERES-wheat model. Atmosphere 11, 681 (2020).

    ADS  Article  Google Scholar 

  • 130.

    Hyles, J., Bloomfield, M. T., Hunt, J. R., Trethowan, R. M. & Trevaskis, B. Phenology and related traits for wheat adaptation. Heredity https://doi.org/10.1038/s41437-020-0320-1 (2020).

    Article  PubMed  Google Scholar 

  • 131.

    Li, Q.-Y. et al. Determination of optimum growing degree-days (GDD) range before winter for wheat cultivars with different growth characteristics in North China Plain. J. Integr. Agric. 11, 405–415. https://doi.org/10.1016/S2095-3119(12)60025-2 (2012).

    Article  Google Scholar 

  • 132.

    Herndl, M., Shan, C.-G., Wang, P., Graeff, S. & Claupein, W. A model based ideotyping approach for wheat under different environmental conditions in North China Plain. Agric. Sci. China 6, 1426–1436. https://doi.org/10.1016/S1671-2927(08)60004-8 (2007).

    Article  Google Scholar 

  • 133.

    Asseng, S., Turner, N. C., Ray, J. D. & Keating, B. A. A simulation analysis that predicts the influence of physiological traits on the potential yield of wheat. Eur. J. Agron. 17, 123–141. https://doi.org/10.1016/S1161-0301(01)00149-6 (2002).

    Article  Google Scholar 

  • 134.

    Rezaei, E. E., Siebert, S. & Ewert, F. Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming. Environ. Res. Lett. 10, 024012 (2015).

    ADS  Article  Google Scholar 

  • 135.

    Eyshi Rezaei, E., Siebert, S. & Ewert, F. Climate and management interaction cause diverse crop phenology trends. Agric. For. Meteorol. 233, 55–70. https://doi.org/10.1016/j.agrformet.2016.11.003 (2017).

    ADS  Article  Google Scholar 

  • 136.

    Wang, Y., Zhang, J., Song, G., Long, Z. & Chen, C. Impacts of recent temperatures rise on double-rice phenology across Southern China. Int. J. Plant Prod. 13, 1–10. https://doi.org/10.1007/s42106-018-0029-8 (2019).

    Article  Google Scholar 

  • 137.

    Hu, X., Huang, Y., Sun, W. & Yu, L. Shifts in cultivar and planting date have regulated rice growth duration under climate warming in China since the early 1980s. Agric. For. Meteorol. 247, 34–41. https://doi.org/10.1016/j.agrformet.2017.07.014 (2017).

    ADS  Article  Google Scholar 

  • 138.

    Zhang, S., Tao, F. & Zhang, Z. Rice reproductive growth duration increased despite of negative impacts of climate warming across China during 1981–2009. Eur. J. Agron. 54, 70–83. https://doi.org/10.1016/j.eja.2013.12.001 (2014).

    CAS  Article  Google Scholar 

  • 139.

    Bai, H. & Xiao, D. Spatiotemporal changes of rice phenology in China during 1981–2010. Theor Appl Climatol 140, 1483–1494. https://doi.org/10.1007/s00704-020-03182-8 (2020).

    ADS  Article  Google Scholar 

  • 140.

    Abbas, G. et al. Sowing date and hybrid choice matters production of maize-maize system. Int. J. Plant Prod. https://doi.org/10.1007/s42106-020-00104-6 (2020).

    Article  Google Scholar 

  • 141.

    Abbas, G. et al. Nitrogen rate and hybrid selection matters productivity of maize-maize cropping system under irrigated arid environment of Southern Punjab, Pakistan. Int. J. Plant Prod. 14, 309–320. https://doi.org/10.1007/s42106-020-00086-5 (2020).

    Article  Google Scholar 

  • 142.

    Xiao, D., Zhao, Y., Bai, H., Hu, Y. & Cao, J. Impacts of climate warming and crop management on maize phenology in northern China. J. Arid Land 11, 892–903. https://doi.org/10.1007/s40333-019-0028-3 (2019).

    Article  Google Scholar 

  • 143.

    Wang, Z. et al. Effects of climate change and cultivar on summer maize phenology. International Journal of Plant Production 10, 509–525 (2016).

    Google Scholar 

  • 144.

    Sacks, W. J. & Kucharik, C. J. Crop management and phenology trends in the U.S. Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agricultural and Forest Meteorology 151, 882–894. https://doi.org/10.1016/j.agrformet.2011.02.010 (2011).

  • 145.

    Mo, F. et al. Phenological responses of spring wheat and maize to changes in crop management and rising temperatures from 1992 to 2013 across the Loess Plateau. Field Crops Research 196, 337–347. https://doi.org/10.1016/j.fcr.2016.06.024 (2016).

    Article  Google Scholar 

  • 146.

    Wang, P. et al. Summer maize growth under different precipitation years in the Huang-Huai-Hai Plain of China. Agric. For. Meteorol. 285–286, 107927. https://doi.org/10.1016/j.agrformet.2020.107927 (2020).

    ADS  Article  Google Scholar 

  • 147.

    Liu, Y., Qin, Y. & Ge, Q. Spatiotemporal differentiation of changes in maize phenology in China from 1981 to 2010. J. Geog. Sci. 29, 351–362. https://doi.org/10.1007/s11442-019-1602-5 (2019).

    Article  Google Scholar 

  • 148.

    Chen, C. et al. Global warming and shifts in cropping systems together reduce China’s rice production. Global Food Security 24, 100359. https://doi.org/10.1016/j.gfs.2020.100359 (2020).

    Article  Google Scholar 

  • 149.

    Lv, Z., Li, F. & Lu, G. Adjusting sowing date and cultivar shift improve maize adaption to climate change in China. Mitig Adapt Strat Glob Change 25, 87–106. https://doi.org/10.1007/s11027-019-09861-w (2020).

    Article  Google Scholar 

  • 150.

    Nahar, K., Ahamed, K. U. & Fujita, M. Phenological variation and its relation with yield in several wheat (Triticum aestivum L.) cultivars under normal and late sowing mediated heat stress condition. Notulae Scientia Biologicae 2, 51–56 (2010).

  • 151.

    Raoufi, R. S. & Soufizadeh, S. Simulation of the impacts of climate change on phenology, growth, and yield of various rice genotypes in humid sub-tropical environments using AquaCrop-Rice. Int J Biometeorol https://doi.org/10.1007/s00484-020-01946-5 (2020).

    Article  PubMed  Google Scholar 

  • 152.

    Karapinar, B. & Özertan, G. Yield implications of date and cultivar adaptation to wheat phenological shifts: a survey of farmers in Turkey. Climatic Change 158, 453–472. https://doi.org/10.1007/s10584-019-02532-4 (2020).

    ADS  CAS  Article  Google Scholar 

  • 153.

    Ahmad, M. J., Iqbal, M. A. & Choi, K. S. Climate-driven constraints in sustaining future wheat yield and water productivity. Agric. Water Manag. 231, 105991. https://doi.org/10.1016/j.agwat.2019.105991 (2020).

    Article  Google Scholar 

  • 154.

    Zacharias, M., Singh, S., Naresh Kumar, S., Harit, R. & Aggarwal, P. Impact of elevated temperature at different phenological stages on the growth and yield of wheat and rice. Ind J Plant Physiol. 15, 350 (2010).

    Google Scholar 

  • 155.

    Sadok, W. & Jagadish, S. V. K. The Hidden Costs of Nighttime Warming on Yields. Trends Plant Sci. 25, 644–651. https://doi.org/10.1016/j.tplants.2020.02.003 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 156.

    Kahiluoto, H. et al. Decline in climate resilience of European wheat. Proc. Natl. Acad. Sci. 116, 123–128. https://doi.org/10.1073/pnas.1804387115 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 157.

    Lavee, H., Imeson, A. C. & Sarah, P. The impact of climate change on geomorphology and desertification along a mediterranean-arid transect. Land Degrad. Dev. 9, 407–422. https://doi.org/10.1002/(sici)1099-145x(199809/10)9:5%3c407::aid-ldr302%3e3.0.co;2-6 (1998).

    Article  Google Scholar 

  • 158.

    Traill, L. W. et al. Managing for change: wetland transitions under sea-level rise and outcomes for threatened species. Divers. Distrib. 17, 1225–1233. https://doi.org/10.1111/j.1472-4642.2011.00807.x (2011).

    Article  Google Scholar 

  • 159.

    Bellard, C., Leclerc, C. & Courchamp, F. Impact of sea level rise on the 10 insular biodiversity hotspots. Glob. Ecol. Biogeogr. 23, 203–212. https://doi.org/10.1111/geb.12093 (2014).

    Article  Google Scholar 

  • 160.

    Feng, Q., Ma, H., Jiang, X., Wang, X. & Cao, S. What Has Caused Desertification in China?. Scientific Reports 5, 15998. https://doi.org/10.1038/srep15998 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 161.

    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nature Climate Change 6, 166–171. https://doi.org/10.1038/nclimate2837 (2016).

    ADS  Article  Google Scholar 

  • 162.

    Liu, B. et al. Global wheat production with 1.5 and 2.0°C above pre-industrial warming. Global Change Biology 25, 1428–1444. https://doi.org/10.1111/gcb.14542 (2019).

  • 163.

    Asseng, S. et al. Climate change impact and adaptation for wheat protein. Glob. Change Biol. 25, 155–173. https://doi.org/10.1111/gcb.14481 (2019).

    ADS  Article  Google Scholar 

  • 164.

    Nayak, D. et al. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agr. Ecosyst. Environ. 209, 108–124. https://doi.org/10.1016/j.agee.2015.04.035 (2015).

    CAS  Article  Google Scholar 

  • 165.

    Kang, Y., Khan, S. & Ma, X. Climate change impacts on crop yield, crop water productivity and food security – A review. Prog. Nat. Sci. 19, 1665–1674. https://doi.org/10.1016/j.pnsc.2009.08.001 (2009).

    Article  Google Scholar 

  • 166.

    Korres, N. E. et al. Cultivars to face climate change effects on crops and weeds: a review. Agron. Sustain. Dev. 36, 12. https://doi.org/10.1007/s13593-016-0350-5 (2016).

    Article  Google Scholar 

  • 167.

    167Ortiz., R. in Food Security and Climate Change145–158 (2018).

  • 168.

    Kumar, S. & Sidana, B. K. Farmers’ perceptions and adaptation strategies to climate change in Punjab agriculture. Indian J. Agric. Sci 88, 1573–1581 (2018).

    Google Scholar 

  • 169.

    Burke, M. & Emerick, K. Adaptation to climate change: Evidence from US agriculture. American Economic Journal: Economic Policy 8, 106–140 (2016).

    Google Scholar 

  • 170.

    Pradhan, A., Chan, C., Roul, P. K., Halbrendt, J. & Sipes, B. Potential of conservation agriculture (CA) for climate change adaptation and food security under rainfed uplands of India: A transdisciplinary approach. Agric. Syst. 163, 27–35. https://doi.org/10.1016/j.agsy.2017.01.002 (2018).

    Article  Google Scholar 

  • 171.

    Bahri, H., Annabi, M., Cheikh M’Hamed, H. & Frija, A. Assessing the long-term impact of conservation agriculture on wheat-based systems in Tunisia using APSIM simulations under a climate change context. Science of The Total Environment 692, 1223–1233. https://doi.org/10.1016/j.scitotenv.2019.07.307 (2019).

  • 172.

    Zampieri, M. et al. Estimating resilience of crop production systems: From theory to practice. Sci. Total Environ. 735, 139378. https://doi.org/10.1016/j.scitotenv.2020.139378 (2020).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 173.

    Wiebe, K., Robinson, S. & Cattaneo, A. in Sustainable Food and Agriculture (eds Clayton Campanhola & Shivaji Pandey) 55–74 (Academic Press, 2019).

  • 174.

    Abebe, T., Guenzi, A. C., Martin, B. & Cushman, J. C. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 131, 1748–1755 (2003).

    CAS  Article  Google Scholar 

  • 175.

    Lee, S.-H. et al. Identification and functional characterization of Siberian wild rye (Elymus sibiricus L.) small heat shock protein 16.9 gene (EsHsp16.9) conferring diverse stress tolerance in prokaryotic cells. Biotechnology Letters 37, 881–890. https://doi.org/10.1007/s10529-014-1749-1 (2015).

  • 176.

    Yamakawa, H., Hirose, T., Kuroda, M. & Yamaguchi, T. Comprehensive Expression Profiling of Rice Grain Filling-Related Genes under High Temperature Using DNA Microarray. Plant Physiol. 144, 258–277. https://doi.org/10.1104/pp.107.098665 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 177.

    Lehmann, N., Finger, R., Klein, T., Calanca, P. & Walter, A. Adapting crop management practices to climate change: Modeling optimal solutions at the field scale. Agric. Syst. 117, 55–65. https://doi.org/10.1016/j.agsy.2012.12.011 (2013).

    Article  Google Scholar 

  • 178.

    Pimentel, A. J. B. et al. Characterization of heat tolerance in wheat cultivars and effects on production components. Revista Ceres 62, 191–198 (2015).

    Article  Google Scholar 

  • 179.

    Lin, B. B. Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change. Bioscience 61, 183–193. https://doi.org/10.1525/bio.2011.61.3.4 (2011).

    Article  Google Scholar 

  • 180.

    Deryng, D., Sacks, W. J., Barford, C. C. & Ramankutty, N. Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochemical Cycles 25, n/a-n/a. https://doi.org/10.1029/2009GB003765 (2011).

  • 181.

    Mase, A. S., Gramig, B. M. & Prokopy, L. S. Climate change beliefs, risk perceptions, and adaptation behavior among Midwestern U.S. crop farmers. Climate Risk Management 15, 8–17. https://doi.org/10.1016/j.crm.2016.11.004 (2017).

  • 182.

    Hernandez-Ochoa, I. M. et al. Adapting irrigated and rainfed wheat to climate change in semi-arid environments: Management, breeding options and land use change. Eur. J. Agron. 109, 125915. https://doi.org/10.1016/j.eja.2019.125915 (2019).

    Article  Google Scholar 

  • 183.

    Meza, F. J. & Silva, D. Dynamic adaptation of maize and wheat production to climate change. Climatic Change 94, 143–156. https://doi.org/10.1007/s10584-009-9544-z (2009).

    ADS  Article  Google Scholar 

  • 184.

    Luo, Q., Bellotti, W., Williams, M. & Wang, E. Adaptation to climate change of wheat growing in South Australia: Analysis of management and breeding strategies. Agr. Ecosyst. Environ. 129, 261–267. https://doi.org/10.1016/j.agee.2008.09.010 (2009).

    Article  Google Scholar 

  • 185.

    Wang, B. et al. Designing wheat ideotypes to cope with future changing climate in South-Eastern Australia. Agric. Syst. 170, 9–18. https://doi.org/10.1016/j.agsy.2018.12.005 (2019).

    Article  Google Scholar 

  • 186.

    Li, Y. et al. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Glob. Change Biol. 26, 3065–3078. https://doi.org/10.1111/gcb.15002 (2020).

    ADS  Article  Google Scholar 

  • 187.

    Hampton, K. N. Persistent and pervasive community: New communication technologies and the future of community. Am. Behav. Sci. 60, 101–124 (2016).

    Article  Google Scholar 

  • 188.

    Asseng, S., Zhu, Y., Wang, E. & Zhang, W. in Crop Physiology (Second Edition) (ed Victor O. SadrasDaniel F. Calderini) 505–546 (Academic Press, 2015).

  • 189.

    Sadras, V. O., Vadez, V., Purushothaman, R., Lake, L. & Marrou, H. Unscrambling confounded effects of sowing date trials to screen for crop adaptation to high temperature. Field Crops Research 177, 1–8. https://doi.org/10.1016/j.fcr.2015.02.024 (2015).

    Article  Google Scholar 

  • 190.

    Rodriguez, D. & Sadras, V. Opportunities from integrative approaches in farming systems design. Field Crops Research 124, 131–141 (2011).

    Google Scholar 

  • 191.

    Cabezas, J. M. et al. Identifying adaptation strategies to climate change for Mediterranean olive orchards using impact response surfaces. Agric. Syst. 185, 102937. https://doi.org/10.1016/j.agsy.2020.102937 (2020).

    Article  Google Scholar 

  • 192.

    Ahmad, I., Ahmad, B., Boote, K. & Hoogenboom, G. Adaptation strategies for maize production under climate change for semi-arid environments. Eur. J. Agron. 115, 126040. https://doi.org/10.1016/j.eja.2020.126040 (2020).

    CAS  Article  Google Scholar 

  • 193.

    Abbas, G. et al. in Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies (eds Shakeel Ahmad & Mirza Hasanuzzaman) 429–445 (Springer Singapore, 2020).

  • 194.

    Ahmed, M. et al. Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Scientific Reports 9, 7813. https://doi.org/10.1038/s41598-019-44251-x (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 195.

    Ahmed, M. & Ahmad, S. in Agronomic Crops: Volume 2: Management Practices (ed Mirza Hasanuzzaman) 31–46 (Springer Singapore, 2019).

  • 196.

    van Ogtrop, F., Ahmad, M. & Moeller, C. Principal components of sea surface temperatures as predictors of seasonal rainfall in rainfed wheat growing areas of Pakistan. Meteorological Applications 21, 431–443. https://doi.org/10.1002/met.1429 (2014).

  • 197.

    Abedinpour, M. et al. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric. Water Manag. 110, 55–66. https://doi.org/10.1016/j.agwat.2012.04.001 (2012).

    Article  Google Scholar 

  • 198.

    Sareen, S. et al. Molecular genetic diversity analysis for heat tolerance of indigenous and exotic wheat genotypes. J. Plant Biochem. Biotechnol. 29, 15–23. https://doi.org/10.1007/s13562-019-00501-7 (2020).

    CAS  Article  Google Scholar 

  • 199.

    Rezaei, E. E. et al. Quantifying the response of wheat yields to heat stress: The role of the experimental setup. Field Crops Research 217, 93–103. https://doi.org/10.1016/j.fcr.2017.12.015 (2018).

    Article  Google Scholar 

  • 200.

    Mechanisms and modelling. Eyshi Rezaei, E., Webber, H., Gaiser, T., Naab, J. & Ewert, F. Heat stress in cereals. Eur. J. Agron. 64, 98–113. https://doi.org/10.1016/j.eja.2014.10.003 (2015).

    Article  Google Scholar 

  • 201.

    Abbas, G. et al. Nitrogen rate and hybrid selection matters productivity of maize-maize cropping system under irrigated arid environment of Southern Punjab, Pakistan. Int. J. Plant Prod. https://doi.org/10.1007/s42106-020-00086-5 (2020).

    Article  Google Scholar 

  • 202.

    Jahan, M. A. H. S. et al. Optimizing sowing window for wheat cultivation in Bangladesh using CERES-wheat crop simulation model. Agr. Ecosyst. Environ. 258, 23–29. https://doi.org/10.1016/j.agee.2018.02.008 (2018).

    Article  Google Scholar 

  • 203.

    Ahmed, S., Humphreys, E. & Chauhan, B. S. Optimum sowing date and cultivar duration of dry-seeded boro on the High Ganges River Floodplain of Bangladesh. Field Crops Research 190, 91–102. https://doi.org/10.1016/j.fcr.2015.12.004 (2016).

    Article  Google Scholar 

  • 204.

    Basso, B., Liu, L. & Ritchie, J. T. in Advances in Agronomy Vol. 136 (ed Donald L. Sparks) 27–132 (Academic Press, 2016).

  • 205.

    Xiong, W. et al. A calibration procedure to improve global rice yield simulations with EPIC. Ecol. Model. 273, 128–139. https://doi.org/10.1016/j.ecolmodel.2013.10.026 (2014).

    Article  Google Scholar 

  • 206.

    Jalota, S. K., Vashisht, B. B., Kaur, H., Kaur, S. & Kaur, P. Location specific climate change scenario and its impact on rice and wheat in Central Indian Punjab. Agric. Syst. 131, 77–86. https://doi.org/10.1016/j.agsy.2014.07.009 (2014).

    Article  Google Scholar 

  • 207.

    Peng, S. et al. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. U.S.A. 101, 9971–9975. https://doi.org/10.1073/pnas.0403720101 (2004).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 208.

    Ritchie, J. T., Singh, U., Godwin, D. C. & Bowen, W. T. in Understanding Options for Agricultural Production Vol. 7 Systems Approaches for Sustainable Agricultural Development (eds GordonY Tsuji, Gerrit Hoogenboom, & PhilipK Thornton) Ch. 5, 79–98 (Springer Netherlands, 1998).

  • 209.

    Nissanka, S. P. et al. Calibration of the phenology sub-model of APSIM-Oryza: Going beyond goodness of fit. Environmental Modelling & Software 70, 128–137. https://doi.org/10.1016/j.envsoft.2015.04.007 (2015).

    Article  Google Scholar 

  • 210.

    Weerakoon, W. M. W. et al. Direct-seeded rice culture in Sri Lanka: Lessons from farmers. Field Crops Research 121, 53–63. https://doi.org/10.1016/j.fcr.2010.11.009 (2011).

    Article  Google Scholar 

  • 211.

    Iftekharuddaula, K. M. et al. Development of early maturing submergence-tolerant rice varieties for Bangladesh. Field Crops Research 190, 44–53. https://doi.org/10.1016/j.fcr.2015.12.001 (2016).

    Article  Google Scholar 

  • 212.

    Haefele, S. M., Kato, Y. & Singh, S. Climate ready rice: Augmenting drought tolerance with best management practices. Field Crops Research 190, 60–69. https://doi.org/10.1016/j.fcr.2016.02.001 (2016).

    Article  Google Scholar 

  • 213.

    Latif, M. A., Islam, M. R., Ali, M. Y. & Saleque, M. A. Validation of the system of rice intensification (SRI) in Bangladesh. Field Crops Research 93, 281–292. https://doi.org/10.1016/j.fcr.2004.10.005 (2005).

    Article  Google Scholar 

  • 214.

    Sarangi, S. K. et al. Using improved variety and management enhances rice productivity in stagnant flood -affected tropical coastal zones. Field Crops Research 190, 70–81. https://doi.org/10.1016/j.fcr.2015.10.024 (2016).

    Article  Google Scholar 

  • 215.

    Raza, M. A. et al. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Scientific Reports 9, 4947. https://doi.org/10.1038/s41598-019-41364-1 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 216.

    Paudel, B., Khanal, R. C., KC, A., Bhatta, K. & Chaudhary, P. Climate-smart agriculture in Nepal. Research program on Climate Change, Agriculture and food security (2017).

  • 217.

    Chauhan, B. S., Mahajan, G., Sardana, V., Timsina, J. & Jat, M. L. in Advances in Agronomy Vol. Volume 117 (ed L. Sparks Donald) 315–369 (Academic Press, 2012).

  • 218.

    Yadvinder, S., Kukal, S. S., Jat, M. L. & Sidhu, H. S. in Advances in Agronomy Vol. 127 (ed Donald Sparks) 157–258 (Academic Press, 2014).

  • 219.

    Jat, M. L. et al. in Advances in Agronomy Vol. 137 (ed Donald L. Sparks) 127–235 (Academic Press, 2016).

  • 220.

    Kukal, S. S., Yadvinder, S., Jat, M. L. & Sidhu, H. S. in Advances in Agronomy Vol. Volume 127 (ed Sparks Donald) 157–258 (Academic Press, 2014).

  • 221.

    Witt, C., Pasuquin, J. & Dobermann, A. Towards a site-specific nutrient management approach for maize in Asia. Better Crops 90, 28–31 (2006).

    Google Scholar 

  • 222.

    Ullah, A., Ahmad, A., Khaliq, T. & Akhtar, J. Recognizing production options for pearl millet in Pakistan under changing climate scenarios. Journal of Integrative Agriculture 16, 762–773. https://doi.org/10.1016/S2095-3119(16)61450-8 (2017).

    Article  Google Scholar 

  • 223.

    Ullah, A., Salehnia, N., Kolsoumi, S., Ahmad, A. & Khaliq, T. Prediction of effective climate change indicators using statistical downscaling approach and impact assessment on pearl millet (Pennisetum glaucum L.) yield through Genetic Algorithm in Punjab, Pakistan. Ecological Indicators 90, 569–576. https://doi.org/10.1016/j.ecolind.2018.03.053 (2018).

  • 224.

    Ausiku, A. P., Annandale, J. G., Steyn, J. M. & Sanewe, A. J. Improving Pearl Millet (Pennisetum glaucum) Productivity through Adaptive Management of Water and Nitrogen. Water 12, 422 (2020).

    CAS  Article  Google Scholar 

  • 225.

    Alauddin, M., Rashid Sarker, M. A., Islam, Z. & Tisdell, C. Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations. Land Use Policy 91, 104430. https://doi.org/10.1016/j.landusepol.2019.104430 (2020).

    Article  Google Scholar 

  • 226.

    Rahman, M. H. u. et al. in Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies (eds Shakeel Ahmad & Mirza Hasanuzzaman) 447–484 (Springer Singapore, 2020).

  • 227.

    Ishfaq, M. et al. Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agric. Water Manag. 241, 106363. https://doi.org/10.1016/j.agwat.2020.106363 (2020).

    Article  Google Scholar 

  • 228.

    Rejesus, R. M., Palis, F. G., Rodriguez, D. G. P., Lampayan, R. M. & Bouman, B. A. M. Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines. Food Policy 36, 280–288. https://doi.org/10.1016/j.foodpol.2010.11.026 (2011).

    Article  Google Scholar 

  • 229.

    Carrijo, D. R., Lundy, M. E. & Linquist, B. A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Research 203, 173–180. https://doi.org/10.1016/j.fcr.2016.12.002 (2017).

    Article  Google Scholar 

  • 230.

    Stuart, D., Schewe, R. L. & McDermott, M. Reducing nitrogen fertilizer application as a climate change mitigation strategy: Understanding farmer decision-making and potential barriers to change in the US. Land Use Policy 36, 210–218. https://doi.org/10.1016/j.landusepol.2013.08.011 (2014).

    Article  Google Scholar 

  • 231.

    Zheng, W., Luo, B. & Hu, X. The determinants of farmers’ fertilizers and pesticides use behavior in China: An explanation based on label effect. Journal of Cleaner Production 272, 123054. https://doi.org/10.1016/j.jclepro.2020.123054 (2020).

    Article  Google Scholar 

  • 232.

    Jiang, G. et al. Soil organic carbon sequestration in upland soils of northern China under variable fertilizer management and climate change scenarios. Global Biogeochem. Cycles 28, 319–333. https://doi.org/10.1002/2013gb004746 (2014).

    ADS  CAS  Article  Google Scholar 

  • 233.

    Omotesho, A., Fakayode, S. & Tariya, Y. Curtailing fertilizer scarcity and climate change; an appraisal of factors affecting organic materials use option in Nigeria’s agriculture. Ethiopian Journal of Environmental Studies and Management 5, 281–290 (2012).

    Article  Google Scholar 

  • 234.

    Raza, A. et al. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 8, 34 (2019).

    CAS  Article  Google Scholar 

  • 235.

    Sloan, K. et al. in The Climate-Smart Agriculture Papers: Investigating the Business of a Productive, Resilient and Low Emission Future (eds Todd S. Rosenstock, Andreea Nowak, & Evan Girvetz) 227–233 (Springer International Publishing, 2019).

  • 236.

    Keith, W. et al. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ. Res. Lett. 10, 085010 (2015).

    Article  Google Scholar 

  • 237.

    Zhang, Z., Yu, K., Siddique, K. H. M. & Nan, Z. Phenology and sowing time affect water use in four warm-season annual grasses under a semi-arid environment. Agric. For. Meteorol. 269–270, 257–269. https://doi.org/10.1016/j.agrformet.2019.02.027 (2019).

    ADS  Article  Google Scholar 

  • 238.

    Dreccer, M. F., Fainges, J., Whish, J., Ogbonnaya, F. C. & Sadras, V. O. Comparison of sensitive stages of wheat, barley, canola, chickpea and field pea to temperature and water stress across Australia. Agric. For. Meteorol. 248, 275–294. https://doi.org/10.1016/j.agrformet.2017.10.006 (2018).

    ADS  Article  Google Scholar 

  • 239.

    Abid, M. et al. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports 8, 4615. https://doi.org/10.1038/s41598-018-21441-7 (2018).

  • 240.

    Macabuhay, A. A. Physiological and biochemical responses of wheat to combined heat stress and elevated CO2 during grain-filling  (2016).

  • 241.

    Stratonovitch, P. & Semenov, M. A. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. J. Exp. Bot. https://doi.org/10.1093/jxb/erv070 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 242.

    Hernández, F., Poverene, M., Mercer, K. L. & Presotto, A. Genetic variation for tolerance to extreme temperatures in wild and cultivated sunflower (Helianthus annuus) during early vegetative phases. Crop and Pasture Science 71, 578–591. https://doi.org/10.1071/CP20005 (2020).

    CAS  Article  Google Scholar 

  • 243.

    Acharjee, T. K., van Halsema, G., Ludwig, F., Hellegers, P. & Supit, I. Shifting planting date of Boro rice as a climate change adaptation strategy to reduce water use. Agric. Syst. 168, 131–143. https://doi.org/10.1016/j.agsy.2018.11.006 (2019).

    Article  Google Scholar 

  • 244.

    Chibarabada, T. P., Modi, A. T. & Mabhaudhi, T. Options for improving water productivity: a case study of bambara groundnut and groundnut. Phys. Chem. Earth Parts A/B/C 115, 102806. https://doi.org/10.1016/j.pce.2019.10.003 (2020).

    Article  Google Scholar 

  • 245.

    Islam, A. R. M. T., Shen, S., Yang, S., Hu, Z. & Atiqur Rahman, M. Spatiotemporal rice yield variations and potential agro-adaptation strategies in Bangladesh: A biophysical modeling approach. Sustain. Prod. Consum. 24, 121–138. https://doi.org/10.1016/j.spc.2020.07.005 (2020).

    Article  Google Scholar 

  • 246.

    Tsegay, A. et al. Sowing and irrigation strategies for improving rainfed tef (Eragrostis tef (Zucc.) Trotter) production in the water scarce Tigray region, Ethiopia. Agric. Water Manag. 150, 81–91. https://doi.org/10.1016/j.agwat.2014.11.014 (2015).

    Article  Google Scholar 

  • 247.

    van Oort, P. A. J., Timmermans, B. G. H. & van Swaaij, A. C. P. M. Why farmers’ sowing dates hardly change when temperature rises. Eur. J. Agron. 40, 102–111. https://doi.org/10.1016/j.eja.2012.02.005 (2012).

    Article  Google Scholar 

  • 248.

    Bassu, S., Asseng, S., Motzo, R. & Giunta, F. Optimising sowing date of durum wheat in a variable Mediterranean environment. Field Crops Res. 111, 109–118. https://doi.org/10.1016/j.fcr.2008.11.002 (2009).

    Article  Google Scholar 

  • 249.

    Aasen, H., Kirchgessner, N., Walter, A. & Liebisch, F. PhenoCams for field phenotyping: using very high temporal resolution digital repeated photography to investigate interactions of growth, phenology, and harvest traits. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.00593 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 250.

    Singh, S., Sandhu, S., Dhaliwal, L. & Singh, I. Effect of planting geometry on microclimate, growth and yield of mung-bean (Vigna radiata L.). J. Agric. Phys. 12, 70–73 (2012).

    Google Scholar 

  • 251.

    van Etten, J. et al. Crop variety management for climate adaptation supported by citizen science. Proc. Natl. Acad. Sci. 116, 4194–4199. https://doi.org/10.1073/pnas.1813720116 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 252.

    Mahato, M. & Adhikari, B. B. Effect of planting geometry on growth of rice varieties. Int. J. Appl. Sci. Biotechnol. 5, 423–429 (2017).

    CAS  Article  Google Scholar 

  • 253.

    Raza, M. A. et al. Optimum strip width increases dry matter, nutrient accumulation, and seed yield of intercrops under the relay intercropping system. Food Energy Secur. 9, e199. https://doi.org/10.1002/fes3.199 (2020).

    Article  Google Scholar 

  • 254.

    Raza, M. A., van der Werf, W., Ahmed, M. & Yang, W. Removing top leaves increases yield and nutrient uptake in maize plants. Nutr. Cycl. Agroecosyst. 118, 57–73. https://doi.org/10.1007/s10705-020-10082-w (2020).

    CAS  Article  Google Scholar 

  • 255.

    Raza, M. A. et al. Effects of contrasting shade treatments on the carbon production and antioxidant activities of soybean plants. Funct. Plant Biol. FPB 47, 342–354. https://doi.org/10.1071/fp19213 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 256.

    Raza, M. A. et al. Optimum leaf defoliation: a new agronomic approach for increasing nutrient uptake and land equivalent ratio of maize soybean relay intercropping system. Field Crops Res. 244, 107647. https://doi.org/10.1016/j.fcr.2019.107647 (2019).

    Article  Google Scholar 

  • 257.

    Raza, M. A. et al. Growth and development of soybean under changing light environments in relay intercropping system. PeerJ 7, e7262. https://doi.org/10.7717/peerj.7262 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 258.

    Raza, M. A. et al. Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system. Food Energy Secur. 8, e170. https://doi.org/10.1002/fes3.170 (2019).

    Article  Google Scholar 

  • 259.

    Huang, F., Liu, Z., Zhang, P. & Jia, Z. Hydrothermal effects on maize productivity with different planting patterns in a rainfed farmland area. Soil Tillage Res. 205, 104794. https://doi.org/10.1016/j.still.2020.104794 (2021).

    Article  Google Scholar 

  • 260.

    Rio, M., Rey, D., Prudhomme, C. & Holman, I. P. Evaluation of changing surface water abstraction reliability for supplemental irrigation under climate change. Agric. Water Manag. 206, 200–208. https://doi.org/10.1016/j.agwat.2018.05.005 (2018).

    Article  Google Scholar 

  • 261.

    Muluneh, A., Stroosnijder, L., Keesstra, S. & Biazin, B. Adapting to climate change for food security in the Rift Valley dry lands of Ethiopia: supplemental irrigation, plant density and sowing date. J. Agric. Sci. 155, 703–724. https://doi.org/10.1017/S0021859616000897 (2016).

    CAS  Article  Google Scholar 

  • 262.

    Ndhleve, S., Nakin, M. & Longo-Mbenza, B. Impacts of supplemental irrigation as a climate change adaptation strategy for maize production: a case of the Eastern Cape Province of South Africa. Water SA 43, 222–228 (2017).

    Article  Google Scholar 

  • 263.

    Bigelow, D. P. & Zhang, H. Supplemental irrigation water rights and climate change adaptation. Ecol. Econ. 154, 156–167. https://doi.org/10.1016/j.ecolecon.2018.07.015 (2018).

    Article  Google Scholar 

  • 264.

    Trevaskis, B. Wheat gene for all seasons. Proc. Natl. Acad. Sci. 112, 11991–11992. https://doi.org/10.1073/pnas.1516398112 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 265.

    Matthew, G., Pierre, M. & Ariel, O.-B. Negative impacts of climate change on cereal yields: statistical evidence from France. Environ. Res. Lett. 12, 054007 (2017).

    ADS  Article  Google Scholar 

  • 266.

    Ortiz, R. et al. Climate change: can wheat beat the heat?. Agric. Ecosyst. Environ. 126, 46–58. https://doi.org/10.1016/j.agee.2008.01.019 (2008).

    Article  Google Scholar 

  • 267.

    Lobell, D. B. et al. Analysis of wheat yield and climatic trends in Mexico. Field Crops Res. 94, 250–256. https://doi.org/10.1016/j.fcr.2005.01.007 (2005).

    Article  Google Scholar 

  • 268.

    Nazim Ud Dowla, M. A. N., Edwards, I., O’Hara, G., Islam, S. & Ma, W. Developing wheat for improved yield and adaptation under a changing climate: optimization of a few key genes. Engineering 4, 514–522. https://doi.org/10.1016/j.eng.2018.06.005 (2018).

    CAS  Article  Google Scholar 

  • 269.

    Mohammadi, R. The use of a combination scoring index to improve durum productivity under drought stress. Exp. Agric. 56, 161–170. https://doi.org/10.1017/S0014479719000231 (2019).

    Article  Google Scholar 

  • 270.

    Cui, L. et al. Development of perennial wheat through hybridization between wheat and wheatgrasses: a review. Engineering 4, 507–513. https://doi.org/10.1016/j.eng.2018.07.003 (2018).

    CAS  Article  Google Scholar 

  • 271.

    Zachariah, M., Mondal, A., Das, M., AchutaRao, K. M. & Ghosh, S. On the role of rainfall deficits and cropping choices in loss of agricultural yield in Marathwada, India. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab93fc (2020).

    Article  Google Scholar 

  • 272.

    Gahlaut, V., Samtani, H. & Khurana, P. Genome-wide identification and expression profiling of cytosine-5 DNA methyltransferases during drought and heat stress in wheat (Triticum aestivum). Genomics 112, 4796–4807. https://doi.org/10.1016/j.ygeno.2020.08.031 (2020).

    CAS  Article  Google Scholar 

  • 273.

    Boote, K. J., Prasad, V., Allen, L. H., Singh, P. & Jones, J. W. Modeling sensitivity of grain yield to elevated temperature in the DSSAT crop models for peanut, soybean, dry bean, chickpea, sorghum, and millet. Eur. J. Agron. 100, 99–109. https://doi.org/10.1016/j.eja.2017.09.002 (2018).

    Article  Google Scholar 

  • 274.

    Elbashir, A. A. E. et al. Genetic variation in heat tolerance-related traits in a population of wheat multiple synthetic derivatives. Breed Sci. 67, 483–492. https://doi.org/10.1270/jsbbs.17048 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 275.

    Reynolds, M. P. et al. An integrated approach to maintaining cereal productivity under climate change. Global Food Secur. 8, 9–18. https://doi.org/10.1016/j.gfs.2016.02.002 (2016).

    Article  Google Scholar 

  • 276.

    Asseng, S. et al. Model-driven multidisciplinary global research to meet future needs: the case for “improving radiation use efficiency to increase yield”. Crop Sci. https://doi.org/10.2135/cropsci2018.09.0562 (2019).

    Article  Google Scholar 

  • 277.

    Smit, B. & Skinner, M. W. Adaptation options in agriculture to climate change: a typology. Mitig. Adapt. Strat. Glob. Change 7, 85–114. https://doi.org/10.1023/A:1015862228270 (2002).

    Article  Google Scholar 

  • 278.

    Liu, Y., Chen, Q., Ge, Q., Dai, J. & Dou, Y. Effects of climate change and agronomic practice on changes in wheat phenology. Clim. Change 150, 273–287. https://doi.org/10.1007/s10584-018-2264-5 (2018).

    ADS  CAS  Article  Google Scholar 

  • 279.

    Loboguerrero, A. M. et al. Food and earth systems: priorities for climate change adaptation and mitigation for agriculture and food systems. Sustainability 11, 1372 (2019).

    Article  Google Scholar 

  • 280.

    Howden, S. M. et al. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. 104, 19691–19696. https://doi.org/10.1073/pnas.0701890104 (2007).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 281.

    Bryan, E., Deressa, T. T., Gbetibouo, G. A. & Ringler, C. Adaptation to climate change in Ethiopia and South Africa: options and constraints. Environ. Sci. Policy 12, 413–426. https://doi.org/10.1016/j.envsci.2008.11.002 (2009).

    Article  Google Scholar 

  • 282.

    Wongnaa, C. A. & Babu, S. Building resilience to shocks of climate change in Ghana’s cocoa production and its effect on productivity and incomes. Technol. Soc. 62, 101288. https://doi.org/10.1016/j.techsoc.2020.101288 (2020).

    Article  Google Scholar 

  • 283.

    Kumar, S., Mishra, A. K., Pramanik, S., Mamidanna, S. & Whitbread, A. Climate risk, vulnerability and resilience: supporting livelihood of smallholders in semiarid India. Land Use Policy 97, 104729. https://doi.org/10.1016/j.landusepol.2020.104729 (2020).

    Article  Google Scholar 

  • 284.

    Morales-Castilla, I. et al. Diversity buffers winegrowing regions from climate change losses. Proc. Natl. Acad. Sci. 117, 2864–2869. https://doi.org/10.1073/pnas.1906731117 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 285.

    Nelson, G. C. et al. Climate change: Impact on agriculture and costs of adaptation. Vol. 21 (Intl Food Policy Res Inst, 2009).

  • 286.

    Olesen, J. E. et al. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112. https://doi.org/10.1016/j.eja.2010.11.003 (2011).

    Article  Google Scholar 

  • 287.

    Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 200. https://doi.org/10.1038/s41467-020-15076-4 (2020).

    ADS  CAS  Article  Google Scholar 

  • 288.

    Mertz, O., Mbow, C., Reenberg, A. & Diouf, A. Farmers’ perceptions of climate change and agricultural adaptation strategies in Rural Sahel. Environ. Manag. 43, 804–816. https://doi.org/10.1007/s00267-008-9197-0 (2009).

    ADS  Article  Google Scholar 

  • 289.

    Smit, B., Burton, I., Klein, R. J. T. & Wandel, J. An anatomy of adaptation to climate change and variability. Clim. Change 45, 223–251. https://doi.org/10.1023/A:1005661622966 (2000).

    Article  Google Scholar 

  • 290.

    Thamo, T. et al. Climate change impacts and farm-level adaptation: economic analysis of a mixed cropping–livestock system. Agric. Syst. 150, 99–108. https://doi.org/10.1016/j.agsy.2016.10.013 (2017).

    Article  Google Scholar 

  • 291.

    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291. https://doi.org/10.1038/nclimate2153 (2014).

    ADS  Article  Google Scholar 

  • 292.

    Reidsma, P., Janssen, S., Jansen, J. & van Ittersum, M. K. On the development and use of farm models for policy impact assessment in the European Union—a review. Agric. Syst. 159, 111–125. https://doi.org/10.1016/j.agsy.2017.10.012 (2018).

    Article  Google Scholar 

  • 293.

    Reidsma, P. et al. Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands. Environ. Res. Lett. 10, 045004 (2015).

    ADS  Article  Google Scholar 

  • 294.

    Reidsma, P., Ewert, F., Lansink, A. O. & Leemans, R. Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur. J. Agron. 32, 91–102. https://doi.org/10.1016/j.eja.2009.06.003 (2010).

    Article  Google Scholar 

  • 295.

    Shahzad, A. N. & Ahmad, S. In Agronomic Crops: Volume 2: Management Practices (ed Hasanuzzaman, M.) 111–126 (Springer Singapore, 2019).

  • 296.

    Ahmed, M. Introduction to Modern Climate Change. Andrew E. Dessler: Cambridge University Press, 2011, 252 pp, ISBN-10: 0521173159. Science of The Total Environment734, 139397, 10.1016/j.scitotenv.2020.139397 (2020).

  • 297.

    Singh, S. Farmers’ perception of climate change and adaptation decisions: a micro-level evidence from Bundelkhand Region, India. Ecol. Ind. 116, 106475. https://doi.org/10.1016/j.ecolind.2020.106475 (2020).

    Article  Google Scholar 

  • 298.

    Wallach, D. et al. Multimodel ensembles improve predictions of crop–environment–management interactions. Glob. Change Biol. 24, 5072–5083. https://doi.org/10.1111/gcb.14411 (2018).

    ADS  Article  Google Scholar 

  • 299.

    Aslam, M. U. et al. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 113–136 (Springer International Publishing, 2017).

  • 300.

    Ijaz, W., Ahmed, M., Fayyaz-ul-Hassan, Asim, M. & Aslam, M. in Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 371–386 (Springer International Publishing, 2017).

  • 301.

    Jabeen, M., Gabriel, H. F., Ahmed, M., Mahboob, M. A. & Iqbal, J. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 387–411 (Springer International Publishing, 2017).

  • 302.

    Aslam, M. A., Ahmed, M., Fayyaz-ul-Hassan & Hayat, R. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 71–90 (Springer International Publishing, 2017).

  • 303.

    Ahmed, M. et al. Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: models evaluation and application. Comput. Electron. Agric. 123, 384–401. https://doi.org/10.1016/j.compag.2016.03.015 (2016).

    Article  Google Scholar 

  • 304.

    Ahmed, M. & Stockle, C. O. Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (Springer, Berlin, 2016).

    Google Scholar 

  • 305.

    Ahmed, M., Fayyaz Ul, H. & Van Ogtrop, F. F. Can models help to forecast rainwater dynamics for rainfed ecosystem?. Weather Clim. Extremes 5–6, 48–55. https://doi.org/10.1016/j.wace.2014.07.001 (2014).

    Article  Google Scholar 

  • 306.

    Ahmed, M., Hassan, F., Aslam, M. A., Akram, M. N. & Akmal, M. Regression model for the study of sole and cumulative effect of temperature and solar radiation on wheat yield. Afr. J. Biotech. 10, 9114–9121 (2011).

    Article  Google Scholar 

  • 307.

    Ahmed, M. & Ahmad, S. In Systems Modeling (ed Ahmed, M.) 1–44 (Springer Singapore, 2020).

  • 308.

    Tariq, M., Ahmed, M., Iqbal, P., Fatima, Z. & Ahmad, S. In Systems Modeling (ed Ahmed, M.) 45–60 (Springer Singapore, 2020).

  • 309.

    Ahmed, M., Raza, M. A. & Hussain, T. In Systems Modeling (ed Ahmed, M.) 111–150 (Springer Singapore, 2020).

  • 310.

    Ahmed, M. et al. In Systems Modeling (ed Ahmed, M.) 151–178 (Springer Singapore, 2020).

  • 311.

    Kheir, A. M. S. et al. In Systems Modeling (ed Ahmed, M.) 179–202 (Springer Singapore, 2020).

  • 312.

    Ahmad, S., & Hasanuzzaman, M. Cotton Production and Uses. Springer Nature Singapore Pte Ltd. (https://link.springer.com/book/10.1007/978-981-15-1472-2); doi: 10.1007/978-981-15-1472-2 (2020) 

  • 313.

    Khan, A., Ahmad, M., Shah, M. K. N. & Ahmed, M. Performance of wheat genotypes for Morpho-Physiological traits using multivariate analysis under terminal heat stress. Pak. J. Bot. 52(6), 1981–1988. https://doi.org/10.30848/PJB2020-6(30)(2020).

  • 314.

    Khan, A., Ahmad, M., Shah, M. K. N., & Ahmed, M. Genetic manifestation of physio-morphic and yield related traits conferring thermotolerance in wheat. Pak. J. Bot. 52(5), 1545–1552. https://doi.org/10.30848/PJB2020-5(27) (2020).


  • Source: Ecology - nature.com

    Cold weather increases the risk of scrotal torsion events: results of an ecological study of acute scrotal pain in Scotland over 25 years

    3 Questions: Fatih Birol on post-Covid trajectories in energy and climate