in

The future of food from the sea

  • 1.

    FAO. The State of World Fisheries and Aquaculture (FAO, 2018).

  • 2.

    Olsen, Y. Resources for fish feed in future mariculture. Aquacult. Environ. Interact. 1, 187–200 (2011).

    Google Scholar 

  • 3.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Mbow, C. et al. in Climate Change and Land (IPCC Special Report) (eds Shukla, P. R. et al.) Ch. 5 (IPCC, 2019).

  • 6.

    Amundson, R. et al. Soil and human security in the 21st century. Science 348, 1261071 (2015).

    Article  Google Scholar 

  • 7.

    UNDP. Sustainable Development Goal 2, Sustainable Development Goals. https://sustainabledevelopment.un.org/sdg2 (accessed 27 July 2020).

  • 8.

    De Silva, S. & Davy, F. Success Stories in Asian Aquaculture (Springer 2010).

  • 9.

    FAO Fisheries and Aquaculture Department. FishStatJ – Software for Fishery and Aquaculture Statistical Time Series. http://www.fao.org/fishery/statistics/software/fishstatj/en (2019).

  • 10.

    Edwards, P., Zhang, W., Belton, B. & Little, D. C. Misunderstandings, myths and mantras in aquaculture: its contribution to world food supplies has been systematically over reported. Mar. Policy 106, 103547 (2019).

    Article  Google Scholar 

  • 11.

    FAO. FAOSTAT. http://www.fao.org/faostat/en/#home (2020).

  • 12.

    Nijdam, D., Rood, T. & Westhoek, H. The price of protein: review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 37, 760–770 (2012).

    Article  Google Scholar 

  • 13.

    Kawarazuka, N. & Béné, C. Linking small-scale fisheries and aquaculture to household nutritional security: an overview. Food Secur. 2, 343–357 (2010).

    Article  Google Scholar 

  • 14.

    Allison, E. H. Aquaculture, Fisheries, Poverty and Food Security (Working Paper 2011–65) (WorldFish Center, 2011).

  • 15.

    Golden, C. D. et al. Fall in fish catch threatens human health. Nature 534, 317–320 (2016).

    ADS  Article  Google Scholar 

  • 16.

    Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Ye, Y. & Gutierrez, N. L. Ending fishery overexploitation by expanding from local successes to globalized solutions. Nat. Ecol. Evol. 1, 0179 (2017).

    Article  Google Scholar 

  • 19.

    Gentry, R. R. et al. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1, 1317–1324 (2017).

    Article  Google Scholar 

  • 20.

    Troell, M., Jonell, M. & Henriksson, P. J. G. Ocean space for seafood. Nat. Ecol. Evol. 1, 1224–1225 (2017).

    Article  Google Scholar 

  • 21.

    Costello, C. et al. The Future of Food from the Sea http://oceanpanel.org/future-food-sea (World Resources Institute, 2019).

  • 22.

    Belton, B., Bush, S. R. & Little, D. C. Not just for the wealthy: rethinking farmed fish consumption in the Global South. Glob. Food Secur. 16, 85–92 (2018).

    Article  Google Scholar 

  • 23.

    Copes, P. The backward-bending supply curve of the fishing industry. Scott. J. Polit. Econ. 17, 69–77 (1970).

    Article  Google Scholar 

  • 24.

    Nielsen, M. Trade liberalisation, resource sustainability and welfare: the case of East Baltic cod. Ecol. Econ. 58, 650–664 (2006).

    Article  Google Scholar 

  • 25.

    Hilborn, R. & Costello, C. The potential for blue growth in marine fish yield, profit and abundance of fish in the ocean. Mar. Policy 87, 350–355 (2018).

    Article  Google Scholar 

  • 26.

    Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl Acad. Sci. USA 117, 2218–2224 (2020).

    CAS  Article  Google Scholar 

  • 27.

    Joffre, O. M., Klerkx, L., Dickson, M. & Verdegem, M. How is innovation in aquaculture conceptualized and managed? A systematic literature review and reflection framework to inform analysis and action. Aquaculture 470, 129–148 (2017).

    Article  Google Scholar 

  • 28.

    Abate, T. G., Nielsen, R. & Tveterås, R. Stringency of environmental regulation and aquaculture growth: a cross-country analysis. Aquac. Econ. Manag. 20, 201–221 (2016).

    Article  Google Scholar 

  • 29.

    Gentry, R. R., Ruff, E. O. & Lester, S. E. Temporal patterns of adoption of mariculture innovation globally. Nat. Sustain. 2, 949–956 (2019).

    Article  Google Scholar 

  • 30.

    The Sea Grant Law Center. Overcoming Impediments to Shellfish Aquaculture Through Legal Research and Outreach: Case Studies (NOAA, 2019).

  • 31.

    Davies, I. P. et al. Governance of marine aquaculture: pitfalls, potential, and pathways forward. Mar. Policy 104, 29–36 (2019).

    Article  Google Scholar 

  • 32.

    Froehlich, H. E., Jacobsen, N. S., Essington, T. E., Clavelle, T. & Halpern, B. S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 1, 298–303 (2018).

    Article  Google Scholar 

  • 33.

    Klinger, D. & Naylor, R. Searching for solutions in aquaculture: charting a sustainable course. Annu. Rev. Environ. Resour. 37, 247–276 (2012).

    Article  Google Scholar 

  • 34.

    Cao, L. et al. China’s aquaculture and the world’s wild fisheries. Science 347, 133–135 (2015).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Little, D. C., Newton, R. W. & Beveridge, M. C. M. Aquaculture: a rapidly growing and significant source of sustainable food? Status, transitions and potential. Proc. Nutr. Soc. 75, 274–286 (2016).

    CAS  Article  Google Scholar 

  • 36.

    Shah, M. R. et al. Microalgae in aquafeeds for a sustainable aquaculture industry. J. Appl. Phycol. 30, 197–213 (2018).

    Article  Google Scholar 

  • 37.

    Troell, M. et al. Does aquaculture add resilience to the global food system? Proc. Natl Acad. Sci. USA 111, 13257–13263 (2014).

    ADS  CAS  Article  Google Scholar 

  • 38.

    Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).

    CAS  Article  Google Scholar 

  • 39.

    Aas, T. S., Ytrestøyl, T. & Åsgård, T. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: An update for 2016. Aquacult. Rep. 15, 100216 (2019).

    Article  Google Scholar 

  • 40.

    European Union. Commission Regulation (EC) No 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. Offic. J. EU L 250, 1–84 (2008).

    Google Scholar 

  • 41.

    OECD & Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2019–2028 (OECD, 2019).

  • 42.

    Froehlich, H. E., Gentry, R. R., Rust, M. B., Grimm, D. & Halpern, B. S. Public perceptions of aquaculture: evaluating spatiotemporal patterns of sentiment around the world. PLoS ONE 12, e0169281 (2017).

    Article  Google Scholar 

  • 43.

    Bacher, K. Perceptions and Misconceptions of Aquaculture: A Global Overview (GLOBEFISH, 2015).

  • 44.

    Bronnmann, J. & Asche, F. Sustainable seafood from aquaculture and wild fisheries: insights from a discrete choice experiment in Germany. Ecol. Econ. 142, 113–119 (2017).

    Article  Google Scholar 

  • 45.

    Gaines, S. D. et al. Improved fisheries management could offset many negative effects of climate change. Sci. Adv. 4, eaao1378 (2018).

    ADS  Article  Google Scholar 

  • 46.

    Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2, 1745–1750 (2018).

    Article  Google Scholar 

  • 47.

    Cashion, T., Tyedmers, P. & Parker, R. W. R. Global reduction fisheries and their products in the context of sustainable limits. Fish Fish. 18, 1026–1037 (2017).

    Article  Google Scholar 

  • 48.

    Ricard, D., Minto, C., Jensen, O. P. & Baum, J. K. Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database. Fish Fish. 13, 380–398 (2012).

    Article  Google Scholar 

  • 49.

    Melnychuk, M. C., Clavelle, T., Owashi, B. & Strauss, K. Reconstruction of global ex-vessel prices of fished species. ICES J. Mar. Sci. 74, 121–133 (2017).

    Article  Google Scholar 

  • 50.

    Mangin, T. et al. Are fishery management upgrades worth the cost? PLoS ONE 13, e0204258 (2018).

    Article  Google Scholar 

  • 51.

    Cai, J. & Leung, P. Short-term Projection of Global Fish Demand and Supply Gaps (FAO, 2017).

  • 52.

    Muhammad, A., Seale, J. L. Jr, Meade, B. & Regmi, A. International Evidence on Food Consumption Patterns: An Update Using 2005 International Comparison Program Data. Technical Bulletin No. TB-1929 (United States Department of Agriculture, 2011).

  • 53.

    PwC. The Long View: How will the global economic order change by 2050? https://www.pwc.com/gx/en/world-2050/assets/pwc-the-world-in-2050-full-report-feb-2017.pdf (2017).

  • 54.

    United Nations. World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100 https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html (2017).


  • Source: Ecology - nature.com

    For student researchers, no pause for the pandemic

    Urban food subsidies reduce natural food limitations and reproductive costs for a wetland bird