in

The identification of sulfide oxidation as a potential metabolism driving primary production on late Noachian Mars

  • 1.

    Fairen, A. G. et al. Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars. Astrobiology 10, 821–843 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Pollard, W. H., Omelon, C., Andersen, D. T. & McKay, C. P. Perennial spring occurrence in the expedition fiord area of western Axel Heiberg Island, Canadian High Arctic. Can. J. Earth Sci. 36, 105–120 (1999).

    ADS  CAS  Google Scholar 

  • 3.

    Pollard, W. et al. Overview of analogue science activities at the McGill Arctic Research Station, Axel Heiberg Island. Can. High Arctic. Planet. Sp. Sci. 57, 646–659 (2009).

    ADS  CAS  Google Scholar 

  • 4.

    Carr, M. H. & Head, J. W. Geologic history of Mars. Earth Planet. Sci. Lett. 294, 185–203 (2010).

    ADS  CAS  Google Scholar 

  • 5.

    Warner, N. et al. Late Noachian to Hesperian climate change on Mars: evidence of episodic warming from transient crater lakes near ares vallis. J. Geophys. Res. E Planets 115, 9002 (2010).

    ADS  Google Scholar 

  • 6.

    Rapin, W. et al. An interval of high salinity in ancient Gale crater. Nat. Geosci. 12, 889–895 (2019).

    ADS  CAS  Google Scholar 

  • 7.

    Wanke, H., Bruckner, J., Dreibus, G., Rieder, R. & Ryabchikov, I. Chemical composition of rocks and soils at the Pathfinder site. Space Sci. Rev. 96, 317–330 (2001).

    ADS  CAS  Google Scholar 

  • 8.

    Clark, B. C. et al. Inorganic analyses of martian surface samples at the Viking landing sites. Science. 194, 1283–1288 (1976).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Connell-Cooper, C. O., Spray, J., Thompson, L. & Berger, J. A. APXS-derived chemistry of the Bagnold dune sands: comparisons with Gale crater soils and the global martian average: APXS—Bagnold Sands and Gale Soils. J. Geophys. Res. Planets 122, 1–21 (2017).

    Google Scholar 

  • 10.

    Gellert, R. et al. Chemistry of rocks and soils in Gusev crater from the alpha particle X-ray spectrometer. Science. 305, 829–832 (2014).

    ADS  Google Scholar 

  • 11.

    Ehlmann, B. L. & Edwards, C. S. Mineralogy of the martian surface. Annu. Rev. Earth Planet. Sci. 42, 291–315 (2014).

    ADS  CAS  Google Scholar 

  • 12.

    Burgess, R., Wright, I. P. & Pillinger, C. T. Distribution of sulphides and oxidised sulphur components in SNC meteorites. Earth Planet. Sci. Lett. 93, 314–320 (1989).

    ADS  CAS  Google Scholar 

  • 13.

    Gooding, J. L. Soil mineralogy and chemistry on Mars: possible clues from salts and clays in SNC meteorites. Icarus. 1, 28–41 (1992).

    ADS  Google Scholar 

  • 14.

    Burns, R. G. & Fisher, D. S. Evolution of sulfide mineralization on Mars. J. Geophys. Res. 95, 14169–14173 (1990).

    ADS  Google Scholar 

  • 15.

    Morris, R. V. et al. Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev crater, Mars: results from the Mössbauer instrument on the Spirit Mars exploration rover. J. Geophys. Res. E Planets 113, 1 (2008).

    ADS  Google Scholar 

  • 16.

    Franz, H. B. et al. Large sulfur isotope fractionations in martian sediments at Gale crater. Nat. Geosci. 10, 658–662 (2017).

    ADS  CAS  Google Scholar 

  • 17.

    Martin, P. E. et al. A two-step K-Ar experiment on Mars: dating the diagenetic formation of jarosite from Amazonian groundwaters. J. Geophys. Res. Planets 122, 2803–2818 (2017).

    ADS  CAS  Google Scholar 

  • 18.

    Lasue, J., Clifford, S. M., Conway, S. J., Mangold, N. & Butcher, F. E. The hydrology of Mars including a potential cryosphere. in Filiberto, J., Schwenzer S. P., (Eds.), Volatiles in the Martian Crust 185–246 (2019).

  • 19.

    Orosei, R. et al. Radar evidence of subglacial liquid water on Mars. Science. 361, 448–449 (2018).

    Google Scholar 

  • 20.

    Jannasch, H. W. The chemosynthetic support of life and the microbial diversity at deep-sea hydrothermal vents. Proc. R. Soc. 225, 277–297 (1985).

    ADS  Google Scholar 

  • 21.

    Visser, J. A. N. M., Robertson, L. A. & Verseveld, H. W. V. A. N. Sulfur production by obligately chemolithoautotrophic Thiobacillus species. Appl. Environ. Microbiol. 63, 2300–2305 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Meier, D. V. et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J. 11, 1545–1558 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    McNichol, J. et al. Primary productivity below the seafloor at deep-sea hot springs. Proc. Natl. Acad. Sci. 115, 6756–6761 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Fike, D. A., Bradley, A. S. & Rose, C. V. Rethinking the ancient sulfur cycle. Annu. Rev. Earth Planet. Sci. 43, 593–622 (2015).

    ADS  CAS  Google Scholar 

  • 25.

    Mahaffy, P. R. et al. Abundance and isotopic compoisition of gases in the martian atmosphere from the Curiosity rover. Science. 341, 263–266 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Stern, J. C. et al. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars. Proc. Natl. Acad. Sci. 112, 4245–4250 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Jakosky, B. M. et al. Mars’ atmospheric history derived from upper-atmosphere measurements of 38Ar/36Ar. Science. 355, 1408–1410 (2017).

    ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Schwenzer, S. P. & Kring, D. A. Impact-generated hydrothermal systems capable of forming phyllosilicates on Noachian Mars. Geology 37, 1091–1094 (2009).

    ADS  CAS  Google Scholar 

  • 29.

    Schwenzer, S. P. et al. Fluids during diagenesis and sulfate vein formation in sediments at Gale crater. Mars. Meteorit. Planet. Sci. 51, 2175–2202 (2016).

    ADS  CAS  Google Scholar 

  • 30.

    McAdam, A. C., Zolotov, M. Y., Mironenko, M. V. & Sharp, T. G. Formation of silica by low-temperature acid alteration of martian rocks: Physical-chemical constraints. J. Geophys. Res. E Planets 113, 1–8 (2008).

    Google Scholar 

  • 31.

    Martín-Torres, F. J. et al. Transient liquid water and water activity at Gale crater on Mars. Nat. Geosci. 8, 357–361 (2015).

    ADS  Google Scholar 

  • 32.

    Fox-Powell, M. G., Hallsworth, J. E., Cousins, C. R. & Cockell, C. S. Ionic strength is a barrier to the habitability of Mars. Astrobiology 16, 427–442 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    McEwen, A. S. et al. Supporting material for seasonal flows on warm martian slopes. Science 333, 740–743 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Soare, R., Pollard, W. & Green, D. Deductive model proposed for evaluating terrestrial analogues. Eos. 82, 501 (2001).

    ADS  Google Scholar 

  • 35.

    Malin, M. C. & Edgett, K. S. Evidence for recent groundwater seepage and surface runoff on Mars. Science. 288, 2330–2336 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Andersen, D. T. & Pollard, W. H. Cold springs in permafrost on Earth and Mars. J. Geophys. Res. 107, 5015 (2002).

    Google Scholar 

  • 37.

    Malin, M. C., Edgett, K. S., Posiolova, L. V., Mccolley, S. M. & Dobrea, E. Z. N. Present-day impact cratering rate and contemporary gully on Mars. Science. 314, 1573–1578 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Battler, M. M., Osinski, G. R. & Banerjee, N. R. Mineralogy of saline perennial cold springs on Axel Heiberg Island, Nunavut, Canada and implications for spring deposits on Mars. Icarus 224, 364–381 (2013).

    ADS  CAS  Google Scholar 

  • 39.

    Rossi, A. P. et al. Large-scale spring deposits on Mars? J. Geophys. Res. 113, 1–17 (2008).

    Google Scholar 

  • 40.

    Brown, R. J. E. Permafrost in the Canadian Arctic archipelago. Geomorphol. Suppl. 13, 102–130 (1972).

    Google Scholar 

  • 41.

    Pollard, W. H. Icing processes associated with high Arctic perennial springs, Axel Heiberg Island, Nunavut Canada. Permafr. Periglac. Process. 16, 51–68 (2005).

    Google Scholar 

  • 42.

    Omelon, C. R., Pollard, W. H. & Andersen, D. T. A geochemical evaluation of perennial spring activity and associated mineral precipitates at Expedition Fjord, Axel Heiberg Island. Can. High Arctic. Appl. Geochem. 21, 1–15 (2006).

    CAS  Google Scholar 

  • 43.

    Fox-Powell, M. G. et al. Natural analogue constraints on Europa’s non-ice surface material. Geophys. Res. Lett. 46, 5759–5767 (2019).

    ADS  Google Scholar 

  • 44.

    Niederberger, T. D. et al. Novel sulfur-oxidizing streamers thriving in perennial cold saline springs of the Canadian High Arctic. Environ. Microbiol. 11, 616–629 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Perreault, N. N., Andersen, D. T., Pollard, W. H., Greer, C. W. & Whyte, L. G. Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian High Arctic. Appl. Environ. Microbiol. 73, 1532–1543 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Eckardt, F. D., Bryant, R. G., McCulloch, G., Spiro, B. & Wood, W. W. The hydrochemistry of a semi-arid pan basin case study: Sua Pan, Makgadikgadi, Botswana. Appl. Geochem. 23, 1563–1580 (2008).

    CAS  Google Scholar 

  • 47.

    Moiseenko, T. I., Gashkina, N. A., Dinu, M. I., Kremleva, T. A. & Khoroshavin, V. Y. Aquatic geochemistry of small lakes: effects of environment changes. Geochem. Int. 51, 1 (2013).

    Google Scholar 

  • 48.

    Minissale, A., National, I., Vaselli, O. & Chandrasekharam, D. Origin and evolution of `intracratonic’ thermal fluids from central-western peninsular India. Earth Planet. Sci. Lett. 181, 377–394 (2000).

    ADS  CAS  Google Scholar 

  • 49.

    Das, A., Rishnaswami, S. K., Arin, M. M. S. & Ande, K. P. Chemical weathering in the Krishna Basin and Western Ghats of the Deccan Traps India. Geochim. Cosmochim. Acta 69, 2067–2084 (2005).

    ADS  CAS  Google Scholar 

  • 50.

    Bullock, M. A., Moore, J. M. & Mellon, M. T. Laboratory simulations of Mars aqueous geochemistry. Icarus 170, 404–423 (2004).

    ADS  CAS  Google Scholar 

  • 51.

    Catling, D. C. A chemical model for evaporites on early Mars’ possible sedimentary tracers of the early climate and implications for exploration. J. Geophys. Res. 104, 16453–16469 (1999).

    ADS  CAS  Google Scholar 

  • 52.

    Moore, J. M. & Bullock, A. Experimental studies of Mars-analog brines. J. Geophys. Res. 104, 21925–21934 (1999).

    ADS  CAS  Google Scholar 

  • 53.

    Schwenzer, S. P. & Kring, D. A. Alteration minerals in impact-generated hydrothermal systems: exploring host rock variability. Icarus 226, 487–496 (2013).

    ADS  CAS  Google Scholar 

  • 54.

    Filiberto, J. et al. A review of volatiles in the martian interior. Meteorit. Planet. Sci. 1958, 1935–1958 (2016).

    ADS  Google Scholar 

  • 55.

    Melwani Daswani, M., Schwenzer, S. P., Reed, M. H., Wright, I. P. & Grady, M. M. Alteration minerals, fluids, and gases on early Mars: predictions from 1-D flow geochemical modeling of mineral assemblages in meteorite ALH 84001. Meteorit Planet Sci. 2174, 2154–2174 (2016).

    ADS  Google Scholar 

  • 56.

    Tosca, N. J., Mclennan, S. M., Lamb, M. P. & Grotzinger, J. P. Physicochemical properties of concentrated martian surface waters. J. Geophys. Res. 116, 1–16 (2011).

    Google Scholar 

  • 57.

    Bridges, J. C. & Schwenzer, S. P. The nakhlite hydrothermal brine on Mars. Earth Planet. Sci. Lett. 359–360, 117–123 (2012).

    ADS  Google Scholar 

  • 58.

    Niederberger, T. D. et al. Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic. ISME J. 4, 1326–1339 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Lay, C. Y. et al. Microbial diversity and activity in hypersaline High Arctic spring channels. Extremophiles 16, 177–191 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Lay, C. Y. et al. Defining the functional potential and active community members of a sediment microbial community in a high-arctic hypersaline subzero spring. Appl. Environ. Microbiol. 79, 3637–3648 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Lamarche-Gagnon, G., Comery, R., Greer, C. W. & Whyte, L. G. Evidence of in situ microbial activity and sulphidogenesis in perennially sub-0 °C and hypersaline sediments of a high Arctic permafrost spring. Extremophiles 19, 1–15 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Sapers, H. M. et al. Biological characterization of microenvironments in a hypersaline cold spring Mars analog. Front. Microbiol. 8, 2527 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 63.

    Willerslev, E., Hansen, A. J. & Poinar, H. N. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol. Evol. 19, 141–147 (2004).

    PubMed  PubMed Central  Google Scholar 

  • 64.

    Willerslev, E. et al. Long-term persistence of bacterial DNA. Curr. Biol. 14, 13–14 (2004).

    Google Scholar 

  • 65.

    Pietramellara, G. et al. Extracellular DNA in soil and sediment: Fate and ecological relevance. Biol. Fertil. Soils 45, 219–235 (2009).

    CAS  Google Scholar 

  • 66.

    Li, R. et al. Comparison of DNA-, PMA-, and RNA-based 16S rRNA Illumina sequencing for detection of live bacteria in water. Sci. Rep. 7, 1–11 (2017).

    ADS  Google Scholar 

  • 67.

    Stamenković, V., Ward, L. M., Mischna, M. & Fischer, W. W. O2 solubility in martian near-surface environments and implications for aerobic life. Nat. Geosci. 11, 905–909 (2018).

    ADS  Google Scholar 

  • 68.

    Ventosa, A., Nieto, J. J. & Oren, A. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62, 504–544 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Kelly, D. P. Halothiobacillus. Bergey’s Man Syst. Archaea Bact. 1, 1–3. https://doi.org/10.1002/9781118960608.gbm01133 (2015).

    Article  Google Scholar 

  • 70.

    Brinkhoff, T., Kuever, J., Muyzer, G. & Jannasch, H. W. Thiomicrospira. Bergey’s Man Syst. Archaea Bact 1, 1–10. https://doi.org/10.1002/9781118960608.gbm01221 (2015).

    Article  Google Scholar 

  • 71.

    Kelly, D. P., Wood, A. P. & Stackebrandt, E. Thiobacillus. Bergey’s Man. Syst. Archaea Bact 1, 1–10. https://doi.org/10.1002/9781118960608.gbm00969 (2015).

    Article  Google Scholar 

  • 72.

    Choi, B.-R. et al. Characterization of facultative sulfur-oxidizing Marinobacter sp. BR13 isolated from marine sediment of Yellow Sea, Korea. J. Korean Soc. Appl. Biol. Chem. 52, 309–314 (2009).

    CAS  Google Scholar 

  • 73.

    Sorokin, D. Y. Oxidation of inorganic sulfur compounds by obligately organotrophic bacteria. Microbiology 72, 641–653 (2003).

    CAS  Google Scholar 

  • 74.

    Bridges, J. C., Hicks, L. J. & Treiman, A. H. Carbonates on Mars. in Filiberto, J. Schwenzer S. P., (Eds.), Volatiles in the Martian Crust, pp. 89–118 (2019).

  • 75.

    Franz, H. B., King, P. L. & Gaillard, F. Sulfur on Mars from the atmosphere to the core. in Filiberto, J. Schwenzer S. P., (Eds.), Volatiles in the Martian Crust, pp. 119–184 (2019).

  • 76.

    Grotzinger, J. P. et al. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater Mars. Science. 343, 1242777 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 77.

    Fastook, J. L., Head, J. W., Marchant, D. R., Forget, F. & Madeleine, J. B. Early Mars climate near the Noachian-Hesperian boundary: Independent evidence for cold conditions from basal melting of the south polar ice sheet (Dorsa Argentea Formation) and implications for valley network formation. Icarus 219, 25–40 (2012).

    ADS  Google Scholar 

  • 78.

    Weiss, D. K. & Head, J. W. Crater degradation in the Noachian highlands of Mars: assessing the hypothesis of regional snow and ice deposits on a cold and icy early Mars. Planet. Space Sci. 117, 401–420 (2015).

    ADS  Google Scholar 

  • 79.

    Abramov, O. & Mojzsis, S. J. Thermal effects of impact bombardments on Noachian Mars. Earth Planet. Sci. Lett. 442, 108–120 (2016).

    ADS  CAS  Google Scholar 

  • 80.

    Fairén, A. G. A cold and wet Mars. Icarus 208, 165–175 (2010).

    ADS  Google Scholar 

  • 81.

    Perreault, N. N. et al. Heterotrophic and autotrophic microbial populations in cold perennial springs of the High Arctic. Appl. Environ. Microbiol. 74, 6898–6907 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 82.

    Liu, C. et al. Marinobacter antarcticus sp. nov., a halotolerant bacterium isolated from Antarctic intertidal sandy sediment. Int. J. Syst. Evol. Microbiol. 62, 1838–1844 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 83.

    Moghadam, M. S. et al. Isolation and genome sequencing of four Arctic marine Psychrobacter strains exhibiting multicopper oxidase activity. BMC Genomics 17, 1–14 (2016).

    Google Scholar 

  • 84.

    Bakermans, C. et al. Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int. J. Syst. Evol. Microbiol. 56, 1285–1291 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 85.

    Antwis, R. E. et al. Fifty important research questions in microbial ecology. FEMS Microbiol. Ecol. 93, 1 (2017).

    Google Scholar 

  • 86.

    Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc. Natl. Acad. Sci. 103, 12115–12120 (2011).

    ADS  Google Scholar 

  • 87.

    Larsen, S., Nielsen, L. P. & Schramm, A. Cable bacteria associated with long-distance electron transport in New England salt marsh sediment. Environ. Microbiol. Rep. 7, 175–179 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 88.

    Huber, B., Herzog, B., Drewes, J. E., Koch, K. & Müller, E. Characterization of sulfur oxidizing bacteria related to biogenic sulfuric acid corrosion in sludge digesters. BMC Microbiol. 1, 1–11. https://doi.org/10.1186/s12866-016-0767-7 (2016).

    CAS  Article  Google Scholar 

  • 89.

    Krishnakumar, B. & Manilal, V. B. Bacterial oxidation of sulphide under denitrifying conditions. Biotechnol. Lett. 21, 437–440 (1999).

    CAS  Google Scholar 

  • 90.

    Price, A., Pearson, V. K., Schwenzer, S. P., Miot, J. & Olsson-Francis, K. Nitrate-dependent iron oxidation: a potential Mars metabolism. Front. Microbiol. 9, 1–15 (2018).

    CAS  Google Scholar 

  • 91.

    Blumenberg, M., Seifert, R., Petersen, S. & Michaelis, W. Biosignatures present in a hydrothermal massive sulfide from the Mid-Atlantic Ridge. Geobiology 5, 435–450 (2007).

    CAS  Google Scholar 

  • 92.

    Banfield, J. F., Moreau, J. W., Chan, C. S., Welch, S. A. & Little, B. Search for life on Mars. Astrobiology 1, 448–465 (2001).

    ADS  Google Scholar 

  • 93.

    Douglas, S. Mineralogical footprints of microbial life. Am. J. Sci. 305, 503–525 (2015).

    ADS  Google Scholar 

  • 94.

    Glamoclija, M. et al. Biosignatures and bacterial diversity in hydrothermal deposits of Solfatara Crater, Italy. Geomicrobiol. J. 21, 529–541 (2010).

    Google Scholar 

  • 95.

    Chan, C. S., Fakra, S. C., Emerson, D., Fleming, E. J. & Edwards, K. J. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J. 5, 717–727 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 96.

    Taylor, C. D., Wirsen, C. O. & Gaill, F. Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl. Environ. Microbiol. 65, 2253–2255 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 97.

    Engel, A. S., Lichtenberg, H., Prange, A. & Hormes, J. Speciation of sulfur from filamentous microbial mats from sulfidic cave springs using X-ray absorption near-edge spectroscopy. FEMS Microbiol. Lett. 269, 54–62 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 98.

    Seager, S., Schrenk, M. & Bains, W. An astrophysical view of Earth-based metabolic biosignature gases. Astrobiology 12, 62–82 (2012).

    ADS  Google Scholar 

  • 99.

    Pellerin, A. et al. Large sulfur isotope fractionation by bacterial sulfide oxidation. Sci. Adv. 5, 1–7 (2019).

    Google Scholar 

  • 100.

    Dobson, V. P., Vreeland, R. H. & Chester, W. Halomonas. Bergey’s Man. Syst. Archaea Bact. https://doi.org/10.1002/9781118960608.gbm01190 (2015).

    Article  Google Scholar 

  • 101.

    Sutter, B. et al. The sample analysis at Mars (SAM) detections of CO2 and CO insedimentary material from Gale crater, Mars: implications for the presence of organic carbon and microbial habitability on Mars. in Proceedings of the AGU Fall Meeting (2016).

  • 102.

    Chatzigiannidou, I., Props, R. & Boon, N. Drinking water bacterial communities exhibit specific and selective necrotrophic growth. NPJ Clean Water 1, 22 (2018).

    Google Scholar 

  • 103.

    An, D. et al. Metagenomics of hydrocarbon resource environments indicates aerobic taxa and genes to be unexpectedly common. Environ. Sci. Technol. 47, 10708–10717 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 104.

    Schmidt, O., Hink, L., Horn, M. A. & Drake, H. L. Peat: home to novel syntrophic species that feed acetate- and hydrogen-scavenging methanogens. ISME J 1, 1–13. https://doi.org/10.1038/ismej.2015.256 (2016).

    CAS  Article  Google Scholar 

  • 105.

    Timmers, P. H. A. et al. Metabolism and occurrence of methanogenic and sulfate-reducing syntrophic acetate oxidizing communities in haloalkaline environments. Front. Microbiol. 9, 1–18 (2018).

    Google Scholar 

  • 106.

    Tillett, D. & Neilan, B. A. Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteria. J. Phycol. 36, 251–258 (2000).

    CAS  Google Scholar 

  • 107.

    Green, M. R. & Sambrook, J. Precipitation of DNA with ethanol. Cold Spring Harb. Protoc. 2016, 1116–1120 (2016).

    Google Scholar 

  • 108.

    Walters, W. A. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, 1–10 (2012).

    Google Scholar 

  • 109.

    Boylen, E. et al. QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science. PeerJ https://doi.org/10.7287/peerj.preprints.27295 (2018).

    Article  Google Scholar 

  • 110.

    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 111.

    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 112.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 113.

    Lane, D.J. 16S/23S rRNA Sequencing. in Nucleic Acid Techniques in Bacterial Systematics (ed. Stackebrandt, E. and Goodfellow, M.) 115–175 (John Wiley and Sons, 1991).

  • 114.

    Hall, A. T. BioEdit: an important software for molecular biology. GERF Bull. Biosci. 2, 60–61 (2011).

    Google Scholar 

  • 115.

    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. No. 41, 95–98 (1999).

    CAS  Google Scholar 

  • 116.

    Pruesse, E., Peplies, J. & Glöckner, F.O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).

  • 117.

    McCollom, T. M. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems. Astrobiology 7, 933–950 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 118.

    Nier, A. & Mcelroy, M. B. Structure of the neutral upper atmosphere of Mars. Science. 194, 28–30 (1976).

  • 119.

    Jakosky, B. M. & Shock, E. L. The biological potential of Mars, the early Earth, and Europa. J. Geophys. Res. E Planets 103, 19359–19364 (1998).

    ADS  CAS  Google Scholar 

  • 120.

    McCollom, T. M. & Amend, J. P. A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and anoxic environments. Geobiology 3, 135–144 (2005).

    CAS  Google Scholar 

  • 121.

    Kaye, J. Z., Márquez, M. C., Ventosa, A. & Baross, J. A. Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int. J. Syst. Evol. Microbiol. 54, 499–511 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 122.

    Lee, J. C. et al. Halomonas taeanensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int. J. Syst. Evol. Microbiol. 55, 2027–2032 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 123.

    Yumoto, I. et al. Psychrobacter piscatorii sp. nov., a psychrotolerant bacterium exhibiting high catalase activity isolated from an oxidative environment. Int. J. Syst. Evol. Microbiol. 60, 205–208 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 124.

    VanTrappen, S., Mergaert, J. & Swings, J. Loktanella salsilacus gen. nov., sp. Nov., Loktanella fryxellensis sp. Nov. and Loktanella vestfoldensis sp. Nov., new members of the Rhodobacter group isolated from microbial mats in Antarctic lakes. Int. J. Syst. Evol. Microbiol. 54, 1263–1269 (2004).

    CAS  Google Scholar 

  • 125.

    Hahnke, R. L., Meier-kolthoff, J. P. & García-lópez, M. Genome-based taxonomic classification of Bacteroidetes. Front. Microbiol. 7, 1–37 (2016).

    Google Scholar 

  • 126.

    Godoy, F. A., Swings, J. & Rehm, B. Sphingopyxis chilensis sp. Nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. Nov.. Int J. Syst. Evol. Microbiol. 53, 473–477 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 127.

    Yu, Y. et al. Sporosarcina antarctica sp. Nov., a psychrophilic bacterium isolated from the Antarctic. Int. J. Syst. Evol. Microbiol. 3, 2114–2117 (2008).

    Google Scholar 

  • 128.

    Satola, B., Wübbeler, J. H. & Steinbüchel, A. Metabolic characteristics of the species Variovorax paradoxus. Appl. Microbiol. Biotechnol. 97, 541–560 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 129.

    Morohoshi, T. et al. Biofilm formation and degradation of commercially available biodegradable plastic films by bacterial consortiums in freshwater environments. Microbes Environ. 33, 332–335 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 130.

    Glockner, F. O., Babenzien, H. & Amann, R. Phylogeny and identification in situ of Nevskia ramosa. Appl. Environ. Microbiol. 64, 1895–1901 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 131.

    Sorokin, D. Y. et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol. 2, 1 (2017).

    Google Scholar 

  • 132.

    Reasoner, D. J. et al. A new medium for the enumeration and subculture of Bacteria from potable water. Appl. Environ. Microbiol. 49, 1–7 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 133.

    Bertani, G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62, 293–300 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 134.

    Macey, M. C., Pratscher, J., Crombie, A. & Murrell, J. C. Draft genome sequences of obligate methylotrophs Methylovorus sp. strain MM2 and Methylobacillus sp. Strain MM3, isolated from grassland soil. Microbiol. Resour. Announc. 7, 1–2 (2018).

    Google Scholar 

  • 135.

    Sievert, S. M., Heidorn, T. & Kuever, J. Halothiobacillus kellyi sp. Nov., a mesophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a shallow-water hydrothermal vent in the Aegean Sea, and emended description of the genus Halothiobacillus. Int. J. Syst. Evol. Microbiol. 50, 1229–1237 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 136.

    Hobbs, G., Frazer, C. M., Gardner, D. C. J., Cullum, J. A. & Oliver, S. G. Dispersed growth of Streptomyces in liquid culture. Appl. Microbiol. Biotechnol. 31, 272–277 (1989).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    D-Lab moves online, without compromising on impact

    Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle