in

The importance of genomic variation for biodiversity, ecosystems and people

  • 1.

    Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 2.

    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).

    Article  Google Scholar 

  • 3.

    Faith, D. P. et al. Evosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Curr. Opin. Environ. Sustain. 2, 66–74 (2010).

    Article  Google Scholar 

  • 4.

    Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10, 121–139 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Rudman, S. M. et al. What genomic data can reveal about eco-evolutionary dynamics. Nat. Ecol. Evol. 2, 9–15 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Therkildsen, N. O. et al. Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science 365, 487–490 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Crutsinger, G. M. et al. Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 313, 966–968 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Leigh, D. M., Hendry, A. P., Vázquez-Domínguez, E. & Friesen, V. L. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evol. Appl. 12, 1505–1512 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Boeuf, G. Marine biodiversity characteristics. C. R. Biol. 334, 435–440 (2011).

    PubMed  Article  Google Scholar 

  • 11.

    Loss, S. R., Terwilliger, L. A. & Peterson, A. C. Assisted colonization: integrating conservation strategies in the face of climate change. Biol. Conserv. 144, 92–100 (2011).

    Article  Google Scholar 

  • 12.

    Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44, 367–388 (2013).

    Article  Google Scholar 

  • 13.

    Witzenberger, K. A. & Hochkirch, A. Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers. Conserv. 20, 1843–1861 (2011).

    Article  Google Scholar 

  • 14.

    Novak, B. J. De-extinction. Genes 9, 548 (2018).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 15.

    Muir, W. M. et al. Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proc. Natl Acad. Sci. USA 105, 17312–17317 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Beck, M. W. et al. The global flood protection savings provided by coral reefs. Nat. Commun 9, 2186 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 17.

    Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis (Island Press, 2005).

  • 18.

    Díaz, S. et al. The IPBES conceptual framework — connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16 (2015).

    Article  Google Scholar 

  • 19.

    Hendry, A. P. Eco-evolutionary Dynamics (Princeton Univ. Press, 2017).

  • 20.

    Whitham, T. G. et al. Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84, 559–573 (2003).

    Article  Google Scholar 

  • 21.

    Larkin, A. A. & Martiny, A. C. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environ. Microbiol. Rep. 9, 55–70 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Rodríguez-Verdugo, A., Buckley, J. & Stapley, J. The genomic basis of eco-evolutionary dynamics. Mol. Ecol. 26, 1456–1464 (2017).

    PubMed  Article  CAS  Google Scholar 

  • 23.

    Chen, E., Huang, X., Tian, Z., Wing, R. A. & Han, B. The genomics of oryza species provides insights into rice domestication and heterosis. Annu. Rev. Plant. Biol. 70, 639–665 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Bailey, J. K. et al. Beavers as molecular geneticists: a genetic basis to the foraging of an ecosystem engineer. Ecology 85, 603–608 (2004).

    Article  Google Scholar 

  • 25.

    Whitham, T. G. et al. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 7, 510–523 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 26.

    Lee, S. M., Jellison, T. & Alper, H. S. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol. Biofuels 7, 1–8 (2014).

    Article  CAS  Google Scholar 

  • 27.

    Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263.e12 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    King, K. C. & Lively, C. M. Does genetic diversity limit disease spread in natural host populations. Heredity 109, 199–203 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Robinson, S. J., Samuel, M. D., Johnson, C. J., Adams, M. & McKenzie, D. I. Emerging prion disease drives host selection in a wildlife population. Ecol. Appl. 22, 1050–1059 (2012).

    PubMed  Article  Google Scholar 

  • 31.

    Springbett, A. J., MacKenzie, K., Woolliams, J. A. & Bishop, S. C. The contribution of genetic diversity to the spread of infectious diseases in livestock populations. Genetics 165, 1465–1474 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Heap, I. M. The occurrence of herbicide-resistant weeds worldwide. Pestic. Sci. 51, 235–243 (1997).

    CAS  Article  Google Scholar 

  • 34.

    Whalon, M. E., Mota-Sanchez, D. & Hollingworth, R. M. Global Pesticide Resistance in Arthropods (CABI, 2008).

  • 35.

    Hartley, C. J. et al. Amplification of DNA from preserved specimens shows blowflies were preadapted for the rapid evolution of insecticide resistance. Proc. Natl Acad. Sci. USA 103, 8757–8762 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Dunlop, E. S., Eikeset, A. M. & Stenseth, N. C. From genes to populations: how fisheries-induced evolution alters stock productivity. Ecol. Appl. 25, 1860–1868 (2015).

    PubMed  Article  Google Scholar 

  • 37.

    Waples, R. S. & Audzijonyte, A. Fishery-induced evolution provides insights into adaptive responses of marine species to climate change. Front. Ecol. Environ. 14, 217–224 (2016).

    Article  Google Scholar 

  • 38.

    Food and Agriculture Organization of the United Nations. Review of the state of world marine fishery resources (FAO, 2011).

  • 39.

    Darimont, C. T. et al. Human predators outpace other agents of trait change in the wild. Proc. Natl Acad. Sci. USA 106, 952–954 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Philipp, D. P. et al. Fisheries-induced evolution in Largemouth Bass: linking vulnerability to angling, parental care, and fitness. Am. Fish. Soc. Symp. 82, 223–234 (2015).

    Google Scholar 

  • 41.

    Philipp, D. P. et al. Selection for vulnerability to angling in largemouth bass. Trans. Am. Fish. Soc. 138, 189–199 (2009).

    Article  Google Scholar 

  • 42.

    Pigeon, G., Festa-Bianchet, M., Coltman, D. W. & Pelletier, F. Intense selective hunting leads to artificial evolution in horn size. Evol. Appl. 9, 521–530 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

    Article  Google Scholar 

  • 44.

    Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Hendry, A. P., Schoen, D. J., Wolak, M. E. & Reid, J. M. The contemporary evolution of fitness. Annu. Rev. Ecol. Evol. Syst. 49, 457–476 (2018).

    Article  Google Scholar 

  • 46.

    Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Souza, F. F. C. et al. Uncovering prokaryotic biodiversity within aerosols of the pristine Amazon forest. Sci. Total Environ. 688, 83–86 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Suffredini, I. B., Barradas Paciencia, M. L., Varella, A. D. & Younes, R. N. Antibacterial activity of Brazilian Amazon plant extracts. Braz. J. Infect. Dis. 10, 400–402 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Blanco-Salas, J., Gutiérrez-García, L., Labrador-Moreno, J. & Ruiz-Téllez, T. Wild plants potentially used in human food in the protected area ‘Sierra Grande de Hornachos’ of Extremadura (Spain). Sustainability 11, 456 (2019).

    Article  Google Scholar 

  • 50.

    Sam Ma, Z., Li, L. & Zhang, Y. P. Defining individual-level genetic diversity and similarity profiles. Sci. Rep. 10, 5805 (2020).

    Article  CAS  Google Scholar 

  • 51.

    Avolio, M. L., Beaulieu, J. M., Lo, E. Y. Y. & Smith, M. D. Measuring genetic diversity in ecological studies. Plant. Ecol. 213, 1105–1115 (2012).

    Article  Google Scholar 

  • 52.

    Günther, T. & Coop, G. Robust identification of local adaptation from allele frequencies. Genetics 195, 205–220 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Booker, T. R., Jackson, B. C. & Keightley, P. D. Detecting positive selection in the genome. BMC Biol. 15, 1–10 (2017).

    Article  CAS  Google Scholar 

  • 54.

    Dawkins, R. The Extended Phenotype – The Gene as the Unit of Selection (Oxford Univ. Press, 1983).

  • 55.

    Shuster, S. M., Lonsdorf, E. V., Wimp, G. M., Bailey, J. K. & Whitham, T. G. Community heritability measures the evolutionary consequences of indirect genetic effects on community structure. Evolution 60, 991–1003 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, 1998).

  • 57.

    Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 58.

    Knott, G. J. & Doudna, J. A. CRISPR-Cas guides the future of genetic engineering. Science 361, 866–869 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Skovmand, L. H. et al. Keystone genes. Trends Ecol. Evol. 33, 689–700 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Pregitzer, C. C., Bailey, J. K., Hart, S. C. & Schweitzer, J. A. Soils as agents of selection: feedbacks between plants and soils alter seedling survival and performance. Evol. Ecol. 24, 1045–1059 (2010).

    Article  Google Scholar 

  • 61.

    Bailey, J. K. et al. From genes to ecosystems: a synthesis of the effects of plant genetic factors across levels of organization. Phil. Trans. R. Soc. B 364, 1607–1616 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Davies, C., Ellis, C. J., Iason, G. R. & Ennos, R. A. Genotypic variation in a foundation tree (Populus tremula L.) explains community structure of associated epiphytes. Biol. Lett. 10, 20140190 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Thompson, T. Q. et al. Anthropogenic habitat alteration leads to rapid loss of adaptive variation and restoration potential in wild salmon populations. Proc. Natl Acad. Sci. USA 116, 177–186 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Ford, M. D. et al. Reviewing and synthesizing the state of the science regarding associations between adult run timing and specific genotypes in Chinook salmon and steelhead (US Department of Commerce, 2020).

  • 65.

    Leroy, C. J. et al. Salmon carcasses influence genetic linkages between forests and streams. Can. J. Fish. Aquat. Sci. 73, 910–920 (2016).

    Article  Google Scholar 

  • 66.

    Crutsinger, G. M. et al. Testing a ‘genes-to-ecosystems’ approach to understanding aquatic-terrestrial linkages. Mol. Ecol. 23, 5888–5903 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia Univ. Press, 1974).

  • 68.

    Csilléry, K., Rodríguez-Verdugo, A., Rellstab, C. & Guillaume, F. Detecting the genomic signal of polygenic adaptation and the role of epistasis in evolution. Mol. Ecol. 27, 606–612 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 69.

    Zytynska, S. E., Fleming, S., Tétard-Jones, C., Kertesz, M. A. & Preziosi, R. F. Community genetic interactions mediate indirect ecological effects between a parasitoid wasp and rhizobacteria. Ecology 91, 1563–1568 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 70.

    Carroll, S. P., Dingle, H. & Famula, T. R. Rapid appearance of epistasis during adaptive divergence following colonization. Proc. R. Soc. Lond. B 270, S80–S83 (2003).

    Article  Google Scholar 

  • 71.

    Carroll, S. P. et al. And the beak shall inherit – evolution in response to invasion. Ecol. Lett. 8, 944–951 (2005).

    Article  Google Scholar 

  • 72.

    Doust, A. N. et al. Beyond the single gene: how epistasis and gene-byenvironment effects influence crop domestication. Proc. Natl Acad. Sci. USA 111, 6178–6183 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Wellenreuther, M., Mérot, C., Berdan, E. & Bernatchez, L. Going beyond SNPs: the role of structural genomic variants in adaptive evolution and species diversification. Mol. Ecol. 28, 1203–1209 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 74.

    Ayala, D. et al. Association mapping desiccation resistance within chromosomal inversions in the African malaria vector Anopheles gambiae. Mol. Ecol. 28, 1333–1342 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 75.

    Christmas, M. J. et al. Chromosomal inversions associated with environmental adaptation in honeybees. Mol. Ecol. 28, 1358–1374 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    Kess, T. et al. A migration-associated supergene reveals loss of biocomplexity in Atlantic cod. Sci. Adv. 5, eaav2461 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Berg, P. R. et al. Trans-oceanic genomic divergence of Atlantic cod ecotypes is associated with large inversions. Heredity 119, 418–428 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 78.

    Frank, K. T., Petrie, B., Choi, J. S. & Leggett, W. C. Ecology: trophic cascades in a formerly cod-dominated ecosystem. Science 308, 1621–1623 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 79.

    Prunier, J. et al. Gene copy number variations involved in balsam poplar (Populus balsamifera L.) adaptive variations. Mol. Ecol. 28, 1476–1490 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 80.

    Youngson, N. A. & Whitelaw, E. Transgenerational epigenetic effects. Annu. Rev. Genomics Hum. Genet. 9, 233–257 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 81.

    Miura, K. et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545–549 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 82.

    Ong-Abdullah, M. et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525, 533–537 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 83.

    Le Luyer, J. et al. Parallel epigenetic modifications induced by hatchery rearing in a Pacific salmon. Proc. Natl Acad. Sci. USA 114, 12964–12969 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 84.

    Baerwald, M. R. et al. Migration-related phenotypic divergence is associated with epigenetic modifications in rainbow trout. Mol. Ecol. 25, 1785–1800 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 85.

    Oke, K. B. et al. Recent declines in salmon body size impact ecosystems and fisheries. Nat. Commun. 11, 4155 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 86.

    Davies, T. J., Urban, M. C., Rayfield, B., Cadotte, M. W. & Peres-Neto, P. R. Deconstructing the relationships between phylogenetic diversity and ecology: a case study on ecosystem functioning. Ecology 97, 2212–2222 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 87.

    Cadotte, M. W. Phylogenetic diversity-ecosystem function relationships are insensitive to phylogenetic edge lengths. Funct. Ecol. 29, 718–723 (2015).

    Article  Google Scholar 

  • 88.

    Cadotte, M. W. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proc. Natl Acad. Sci. USA 110, 8996–9000 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 89.

    MacIvor, J. S. et al. Manipulating plant phylogenetic diversity for green roof ecosystem service delivery. Evol. Appl. 11, 2014–2024 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 90.

    Clark, J. S., Scher, C. L. & Swift, M. The emergent interactions that govern biodiversity change. Proc. Natl Acad. Sci. USA 117, 17074–17083 (2020).

    PubMed  Article  Google Scholar 

  • 91.

    Crutsinger, G. M. A community genetics perspective: opportunities for the coming decade. N. Phytol. 210, 65–70 (2016).

    Article  Google Scholar 

  • 92.

    Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 93.

    van Moorsel, S. J. et al. Community evolution increases plant productivity at low diversity. Ecol. Lett. 21, 128–137 (2018).

    PubMed  Article  Google Scholar 

  • 94.

    Wade, M. J. The co-evolutionary genetics of ecological communities. Nat. Rev. Genet. 8, 185–195 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 95.

    Genung, M. A., Bailey, J. K. & Schweitzer, J. A. Welcome to the neighbourhood: Interspecific genotype by genotype interactions in Solidago influence above- and belowground biomass and associated communities. Ecol. Lett. 15, 65–73 (2012).

    PubMed  Article  Google Scholar 

  • 96.

    Genung, M. A., Bailey, J. K. & Schweitzer, J. A. The afterlife of interspecific indirect genetic effects: genotype interactions alter litter quality with consequences for decomposition and nutrient dynamics. PLoS ONE 8, e53718 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 97.

    Lankau, R. A. & Nodurft, R. N. An exotic invader drives the evolution of plant traits that determine mycorrhizal fungal diversity in a native competitor. Mol. Ecol. 22, 5472–5485 (2013).

    PubMed  Article  Google Scholar 

  • 98.

    Lankau, R. A., Nuzzo, V., Spyreas, G. & Davis, A. S. Evolutionary limits ameliorate the negative impact of an invasive plant. Proc. Natl Acad. Sci. USA 107, 1253 (2010).

    CAS  Article  Google Scholar 

  • 99.

    Lankau, R. A. Coevolution between invasive and native plants driven by chemical competition and soil biota. Proc. Natl Acad. Sci. USA 109, 11240–11245 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 100.

    Lankau, R. A., Bauer, J. T., Anderson, M. R. & Anderson, R. C. Long-term legacies and partial recovery of mycorrhizal communities after invasive plant removal. Biol. Invasions 16, 1979–1990 (2014).

    Article  Google Scholar 

  • 101.

    Miller, E. T., Svanbäck, R. & Bohannan, B. J. M. Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol. Evol. 33, 926–935 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 102.

    Pearse, D. E., Miller, M. R., Abadía-Cardoso, A. & Garza, J. C. Rapid parallel evolution of standing variation in a single, complex, genomic region is associated with life history in steelhead/rainbow trout. Proc. R. Soc. B 281, 20140012 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 103.

    Narum, S. R., Genova, A. D., Micheletti, S. J. & Maass, A. Genomic variation underlying complex life-history traits revealed by genome sequencing in Chinook salmon. Proc. R. Soc. B 285, 20180935 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 104.

    Prince, D. J. et al. The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation. Sci. Adv. 3, e1603198 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 105.

    Rey, O. et al. Linking epigenetics and biological conservation: towards a conservation epigenetics perspective. Funct. Ecol. 34, 414–427 (2020).

    Article  Google Scholar 

  • 106.

    Hu, J. & Barrett, R. D. H. Epigenetics in natural animal populations. J. Evol. Biol. 30, 1612–1632 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 107.

    Herrera, C. M., Medrano, M., Pérez, R., Bazaga, P. & Alonso, C. Within-plant heterogeneity in fecundity and herbivory induced by localized DNA hypomethylation in the perennial herb Helleborus foetidus. Am. J. Bot. 106, 798–806 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 108.

    Cohen, S. N., Chang, A. C. Y., Boyer, H. W. & Helling, R. B. Construction of biologically functional bacterial plasmids in vitro (R factor/restriction enzyme/transformation/endonuclease/antibiotic resistance). Proc. Natl Acad. Sci. USA 70, 3240–3244 (1973).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 109.

    Porteus, M. H. & Carroll, D. Gene targeting using zinc finger nucleases. Nat. Biotechnol. 23, 967–973 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 110.

    Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 111.

    Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 112.

    Burt, A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. R. Soc. Lond. B 270, 921–928 (2003).

    CAS  Article  Google Scholar 

  • 113.

    Zhang, Y., Massel, K., Godwin, I. D. & Gao, C. Applications and potential of genome editing in crop improvement. Genome Biol. 19, 210 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 114.

    Charu, V. & Kaplan, D. L. Silk as a biomaterial. Prog. Polym. Sci. 100, 130–134 (2012).

    Google Scholar 

  • 115.

    Mosa, K. A., Saadoun, I., Kumar, K., Helmy, M. & Dhankher, O. P. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front. Plant Sci. 7, 303 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 116.

    Champer, J., Buchman, A. & Akbari, O. S. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat. Rev. Genet. 17, 146–159 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 117.

    Rode, N. O., Estoup, A., Bourguet, D., Courtier-Orgogozo, V. & Débarre, F. Population management using gene drive: molecular design, models of spread dynamics and assessment of ecological risks. Conserv. Genet. 20, 671–690 (2019).

    CAS  Article  Google Scholar 

  • 118.

    Esvelt, K. M. & Gemmell, N. J. Conservation demands safe gene drive. PLoS Biol. 15, 1–8 (2017).

    Article  CAS  Google Scholar 

  • 119.

    Phuc, H. et al. Late-acting dominant lethal genetic systems and mosquito control. BMC Biol. 5, 11 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 120.

    Campbell, K. J. et al. in Island Invasives: Scaling up to Meet the Challenge (eds Veitch, C. R., Clout, M. N., Martin, A. R., Russel, J. C. & West, C. J.) 6–14 (IUCN, 2019).

  • 121.

    Sherkow, J. S. & Greely, H. T. What if extinction is not forever? Science 340, 32–33 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 122.

    Otoupal, P. B., Cordell, W. T., Bachu, V., Sitton, M. J. & Chatterjee, A. Multiplexed deactivated CRISPR-Cas9 gene expression perturbations deter bacterial adaptation by inducing negative epistasis. Commun. Biol. 1, 129 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 123.

    Kraft, K. et al. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice. Cell Rep. 10, 833–839 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 124.

    Springer, N. M. & Schmitz, R. J. Exploiting induced and natural epigenetic variation for crop improvement. Nat. Rev. Genet. 18, 563–575 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 125.

    Reinders, J. et al. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23, 939–950 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 126.

    Carrière, Y., Crowder, D. W. & Tabashnik, B. E. Evolutionary ecology of insect adaptation to Bt crops. Evol. Appl. 3, 561–573 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 127.

    Fish, D. & Carpenter, S. R. Leaf litter and larval mosquito dynamics in tree-hole ecosystems. Ecology 63, 283–288 (1982).

    Article  Google Scholar 

  • 128.

    Kraus, J. M. & Vonesh, J. R. Fluxes of terrestrial and aquatic carbon by emergent mosquitoes: a test of controls and implications for cross-ecosystem linkages. Oecologia 170, 1111–1122 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 129.

    Sheehan, S. & Song, Y. S. Deep learning for population genetic inference. PLoS Comput. Biol. 12, e1004845 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 130.

    Schrider, D. R. & Kern, A. D. Supervised machine learning for population genetics: a new paradigm. Trends Genet. 34, 301–312 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 131.

    Christin, S., Hervet, É. & Lecomte, N. Applications for deep learning in ecology. Methods Ecol. Evol. 10, 1632–1644 (2019).

    Article  Google Scholar 

  • 132.

    Desjardins-Proulx, P., Laigle, I., Poisot, T. & Gravel, D. Ecological interactions and the Netflix problem. PeerJ 2017, e3644 (2017).

    Article  Google Scholar 

  • 133.

    Ruffley, M., Peterson, K., Week, B., Tank, D. C. & Harmon, L. J. Identifying models of trait-mediated community assembly using random forests and approximate Bayesian computation. Dep. Biol. Sci. https://doi.org/10.1002/ece3.5773 (2019).

    Article  Google Scholar 

  • 134.

    Laikre, L. et al. Neglect of genetic diversity in implementation of the convention on biological diversity: conservation in practice and policy. Conserv. Biol. 24, 86–88 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 135.

    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).

    Article  Google Scholar 

  • 136.

    Meyer, P. et al. Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. Mol. Gen. Genet. 231, 345–352 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 137.

    Morandin, L. A. & Winston, M. L. Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecol. Appl. 15, 871–881 (2005).

    Article  Google Scholar 

  • 138.

    Axelsson, E. P. et al. Leaf litter from insect-resistant transgenic trees causes changes in aquatic insect community composition. J. Appl. Ecol. 48, 1472–1479 (2011).

    Article  Google Scholar 

  • 139.

    Axelsson, E. P., Hjältén, J. & LeRoy, C. J. Performance of insect-resistant Bacillus thuringiensis (Bt)-expressing aspens under semi-natural field conditions including natural herbivory in Sweden. For. Ecol. Manage. 264, 167–171 (2012).

    Article  Google Scholar 

  • 140.

    Sundström, L. F., Lõhmus, M., Tymchuk, W. E. & Devlin, R. H. Gene-environment interactions influence ecological consequences of transgenic animals. Proc. Natl Acad. Sci. USA 104, 3889–3894 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 141.

    Sundström, L. F., Lôhmus, M., Johnsson, J. I. & Devlin, R. H. Growth hormone transgenic salmon pay for growth potential with increased predation mortality. Proc. R. Soc. Lond. B 271, 350–352 (2004).

    Article  Google Scholar 

  • 142.

    Bodbyl Roels, S. A. & Kelly, J. K. Rapid evolution caused by pollinator loss in Mimulus guttatus. Evolution 65, 2541–2552 (2011).

    PubMed Central  Article  Google Scholar 

  • 143.

    Cheptou, P. O., Carrue, O., Rouifed, S. & Cantarel, A. Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. Proc. Natl Acad. Sci. USA 105, 3796–3799 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 144.

    Polymenakou, P. N. Atmosphere: a source of pathogenic or beneficial microbes? Atmosphere 3, 87–102 (2012).

    Article  Google Scholar 

  • 145.

    Collins, S. Many possible worlds: expanding the ecological scenarios in experimental evolution. Evol. Biol. 38, 3–14 (2011).

    Article  Google Scholar 

  • 146.

    Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37, 117–134 (2009).

    CAS  Article  Google Scholar 

  • 147.

    Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 148.

    Harmon, L. J. et al. Evolutionary diversification in stickleback affects ecosystem functioning. Nature 458, 1167–1170 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 149.

    Hairston, N. G. et al. Rapid evolution revealed by dormant eggs. Nature 401, 446–446 (1999).

    Article  Google Scholar 

  • 150.

    Bothe, H. & Słomka, A. Divergent biology of facultative heavy metal plants. J. Plant Physiol. 219, 45–61 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 151.

    Reusch, T. B. H., Ehlers, A., Hammerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl Acad. Sci. USA 102, 2826–2831 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 152.

    Crutsinger, G. M., Souza, L. & Sanders, N. J. Intraspecific diversity and dominant genotypes resist plant invasions. Ecol. Lett. 11, 16–23 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 153.

    Pelz, H. J. et al. The genetic basis of resistance to anticoagulants in rodents. Genetics 170, 1839–1847 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 154.

    National Research Council. Materials Research to Meet 21st Century Defense Needs (National Academies Press, 2003).

  • 155.

    Hutchison, W. D. et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330, 222–225 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 156.

    Leale, A. M. & Kassen, R. The emergence, maintenance, and demise of diversity in a spatially variable antibiotic regime. Evol. Lett. 2, 134–143 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 157.

    Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296, 707–711 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 158.

    Grant, P. R. & Grant, B. R. Evolution of character displacement in Darwin’ s finches. Science 313, 224–226 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 159.

    Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 160.

    Constantino, V. Instinct extinct: the great pacific flyway. Leonardo 52, 5–11 (2018).

    Article  Google Scholar 

  • 161.

    Lewis, B., Grant, W. S., Brenner, R. E. & Hamazaki, T. Changes in size and age of chinook salmon Oncorhynchus tshawytscha returning to Alaska. PLoS ONE 10, 132872 (2015).

    Google Scholar 

  • 162.

    Schweitzer, J. A. et al. From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system. Ecosystems 11, 1005–1020 (2008).

    CAS  Article  Google Scholar 

  • 163.

    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018). Introduction to the key concept of NCP.

    PubMed  Article  Google Scholar 


  • Source: Ecology - nature.com

    Georgina Mace (1953–2020)

    Designing off-grid refrigeration technologies for crop storage in Kenya