in

The proportion of soil-borne pathogens increases with warming at the global scale

  • 1.

    Barford E. Crop pests advancing with global warming. Nature https://doi.org/10.1038/nature.2013.13644 (2013).

  • 2.

    Newbery, F. et al. Modelling impacts of climate change on arable crop diseases: progress, challenges and applications. Curr. Opin. Plant Biol. 32, 101–109 (2016).

    • Article
    • Google Scholar
  • 3.

    Tollefson, J. IPCC says limiting global warming to 1.5 °C will require drastic action. Nature 562, 172–173 (2018).

  • 4.

    Chakraborty, S. & Newton, A. C. Climate change, plant diseases and food security. Plant Pathol. 60, 2–14 (2011).

    • Article
    • Google Scholar
  • 5.

    Moore, D. et al. 21st Century Guidebook to Fungi (Cambridge Univ. Press, 2011).

  • 6.

    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    • Article
    • Google Scholar
  • 7.

    Parry, D. W. et al. Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol. 44, 207–238 (1993).

    • Article
    • Google Scholar
  • 8.

    Qiu, Z. et al. New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnol. Adv. 37, 107371 (2019).

  • 9.

    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

  • 10.

    Asner, G. P. et al. Grazing systems, ecosystem responses, and global change. Annu. Rev. Environ. Resour. 29, 261–299 (2004).

    • Article
    • Google Scholar
  • 11.

    Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Environ. Resour. 47, 215–237 (2016).

    • Google Scholar
  • 12.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • 13.

    Oliverio, A. M. et al. Identifying the microbial taxa that consistently respond to soil warming across time and space. Glob. Change Biol. 23, 2117–2129 (2017).

    • Article
    • Google Scholar
  • 14.

    Bebber, D. P. et al. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23, 1398–1407 (2013).

    • Article
    • Google Scholar
  • 15.

    Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).

  • 16.

    De Guevara, M. L. et al. The ‘PhenoBox’, a flexible, automated, open‐source plant phenotyping solution. New Phytol. 219, 808–823 (2018).

    • Article
    • Google Scholar
  • 17.

    Guiot, J. & Wolfgang Cramer, W. Mediterranean warming fast, deserts may spread in Europe. Science 354, 465–468 (2016).

  • 18.

    Dean, R. et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414–430 (2012).

    • Article
    • Google Scholar
  • 19.

    Agrios, G. N. Plant Pathology (Academic, 2005).

  • 20.

    IPCC Special Report on Land Use, Land-Use Change and Forestry (Cambridge Univ. Press, 2000).

  • 21.

    Bell, T. & Tylianakis, J. M. Microbes in the Anthropocene: spillover of agriculturally selected bacteria and their impact on natural ecosystems. Proc. Biol. Sci. 283, 20160896 (2016).

    • Article
    • Google Scholar
  • 22.

    Caliz, J. et al. A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. Proc. Natl Acad. Sci. USA 115, 12229–12234 (2018).

  • 23.

    Barberan, A. et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc. Natl Acad. Sci. USA 112, 5756–5761 (2015).

  • 24.

    Sugden, A. M. Warming, crops, and insect pests. Science 361, 888–889 (2018).

    • Google Scholar
  • 25.

    Borrelli, P. et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 2013 (2017).

  • 26.

    Panagos, P. et al. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 54, 438 (2015).

    • Article
    • Google Scholar
  • 27.

    World Population Prospects 2019: Highlights (United Nations Department of Economic and Social Affairs, Population Division, 2019).

  • 28.

    Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 325, 320–325 (2018).

  • 29.

    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest–tree symbioses. Nature 569, 404–408 (2019).

  • 30.

    Köhl, J. et al. Epidemiology of dark leaf spot caused by Alternaria brassicicola and A. brassicae in organic seed production of cauliflower. Plant Pathol. 59, 358–367 (2010).

  • 31.

    Hijmans, R. J. et al. Very high resolution interpolated climate surfaces for global land areas. Int. J. Clim. 25, 1965–1978 (2005).

    • Article
    • Google Scholar
  • 32.

    Filipponi, F. et al. Global MODIS fraction of green vegetation cover for monitoring abrupt and gradual vegetation changes. Remote Sens. 10, 653 (2018).

    • Article
    • Google Scholar
  • 33.

    Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

  • 34.

    Anderson, J. M. & Ingram, J. S. I. (eds) Tropical Soil Biology and Fertility: A Handbook of Methods 2nd edn (CABI, 1993).

  • 35.

    Grace, J. B. Structural Equation Modeling Natural Systems (Cambridge Univ. Press, 2006).

  • 36.

    Schermelleh-Engel, K. et al. Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods Psychol. Res. 8, 23–74 (2003).

    • Google Scholar
  • 37.

    Klaus B. & Strimmer K. Estimation of (Local) False Discovery Rates and Higher Criticism. R packagedrtool’ version 1.2.15 (2015); https://cran.r-project.org/

  • 38.

    Monteleoni, C. et al. Tracking climate models. Stat. Anal. Data Min. 4, 372–392 (2011).

    • Article
    • Google Scholar
  • 39.

    Hempel, S. et al. A trend-preserving bias correction—the ISI–MIP approach. Earth Syst. Dyn. 4, 219–236 (2013).

    • Article
    • Google Scholar
  • 40.

    Lawrence, D. M. et al. The land use model intercomparison project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).

    • Article
    • Google Scholar
  • 41.

    Kim, H. et al. A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geosci. Model Dev. 11, 4537–4562 (2018).

    • Article
    • Google Scholar
  • 42.

    Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).

    • Article
    • Google Scholar
  • 43.

    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117 (2011).

    • Article
    • Google Scholar
  • 44.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    • Article
    • Google Scholar
  • 45.

    O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim. Change 122, 387–400 (2014).

    • Article
    • Google Scholar
  • 46.

    USGS EROS Archive. Digital Elevation – Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) (USGS, 2010); https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-multi-resolution-terrain-elevation

  • 47.

    Maestre F. T. et al. in Biological Soil Crusts: An Organizing Principle in Drylands (eds Weber, Büdel, B. and Belnap, J.) 407–425 (Springer, 2016).

  • 48.

    Bowker, M. A. et al. Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology. Biodivers. Conserv. 23, 1619–1637 (2014).

    • Article
    • Google Scholar
  • 49.

    Castillo-Monroy, A. P. et al. Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: insights from a Mediterranean grassland. Plant Soil 333, 21–34 (2010).

  • 50.

    Maestre, F. T. et al. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob. Change Biol. 19, 3835–3847 (2013).

    • Article
    • Google Scholar
  • 51.

    De Castro, M. et al. Evaluación Preliminar de los Impactos en España por Efecto del Cambio Climático (Ministerio Medio Ambiente, 2005).

  • 52.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

  • 53.

    Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint at https://doi.org/10.1101/081257 (2016).

  • 54.

    Kõljalg, U. et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 166, 1063–1068 (2005).

  • 55.

    Geiser, D. M. et al. One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology 103, 400–408 (2013).

    • Article
    • Google Scholar
  • 56.

    Kulik, T. et al. Quantification of Alternaria, Cladosporium, Fusarium and Penicillium verrucosum in conventional and organic grains by qPCR. J. Phytopathol. 163, 522–528 (2015).

    • Article
    • Google Scholar
  • 57.

    Delgado-Baquerizo, M. et al. The Proportion of Soil-borne Pathogens Increases with Warming at the Global Scale https://doi.org/10.6084/m9.figshare.11484747 (2020).


  • Source: Ecology - nature.com

    Kerry Emanuel, David Sabatini, and Peter Shor receive BBVA Frontiers of Knowledge awards

    3 Questions: Harnessing wave power to rebuild islands