in

The role of seagrass vegetation and local environmental conditions in shaping benthic bacterial and macroinvertebrate communities in a tropical coastal lagoon

  • 1.

    Birkeland, C. & Grosenbaugh, D. Ecological interactions between tropical coastal ecosystems. in UNEP Regional Seas Reports and Studies, Vol. 73 (PNUMA, 1985).

  • 2.

    Moberg, F. & Rönnbäck, P. Ecosystem services of the tropical seascape: interactions, substitutions and restoration. Ocean Coast. Manag.46, 27–46 (2003).

    Google Scholar 

  • 3.

    Gladstone, W. Conservation and management of tropical coastal ecosystems. In Ecological Connectivity Among Tropical Coastal Ecosystems (ed. Nagelkerken, I.) 565–605 (Springer, Dordrecht, 2009). https://doi.org/10.1007/978-90-481-2406-0_16.

    Google Scholar 

  • 4.

    Berkström, C. et al. Exploring ‘knowns’ and ‘unknowns’ in tropical seascape connectivity with insights from East African coral reefs. Estuar. Coast. Shelf Sci.107, 1–21 (2012).

    ADS  Google Scholar 

  • 5.

    Ogden, J. C. The influence of adjacent systems on the structure and function of coral reefs. In Proceedings of the 6th International Coral Reef Symposium, Vol. 1, 123–129 (1988).

  • 6.

    Nagelkerken, I. et al. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar. Coast. Shelf Sci.51, 31–44 (2000).

    ADS  Google Scholar 

  • 7.

    Grober-Dunsmore, R., Pittman, S. J., Caldow, C., Kendall, M. S. & Frazer, T. K. A landscape ecology approach for the study of ecological connectivity across tropical marine seascapes. In Ecological Connectivity Among Tropical Coastal Ecosystems (ed. Nagelkerken, I.) 493–530 (Springer, Dordrecht, 2009). https://doi.org/10.1007/978-90-481-2406-0_14.

    Google Scholar 

  • 8.

    Hemminga, M. A. & Duarte, C. M. Seagrass ecology (Cambridge University Press, Cambridge, 2000). https://doi.org/10.1017/CBO9780511525551.

    Google Scholar 

  • 9.

    Short, F., Carruthers, T., Dennison, W. & Waycott, M. Global seagrass distribution and diversity: a bioregional model. J. Exp. Mar. Biol. Ecol.350, 3–20 (2007).

    Google Scholar 

  • 10.

    Knowles, L. L. & Bell, S. S. The influence of habitat structure in faunal-habitat associations in a Tampa Bay seagrass system Florida. Bull. Mar. Sci.62, 781–794 (1998).

    Google Scholar 

  • 11.

    Connolly, R. M. & Hindell, J. S. Review of nekton patterns and ecological processes in seagrass landscapes. Estuar. Coast. Shelf Sci.68, 433–444 (2006).

    ADS  Google Scholar 

  • 12.

    Horinouchi, M. Review of the effects of within-patch scale structural complexity on seagrass fishes. J. Exp. Mar. Biol. Ecol.350, 111–129 (2007).

    Google Scholar 

  • 13.

    Gacia, E., Duarte, C. M. & Middelburg, J. J. Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow. Limnol. Oceanogr.47, 23–32 (2002).

    ADS  CAS  Google Scholar 

  • 14.

    Hendriks, I. E., Sintes, T., Bouma, T. J. & Duarte, C. M. Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Mar. Ecol. Prog. Ser.356, 163–173 (2008).

    ADS  Google Scholar 

  • 15.

    Beck, M. W. et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: a better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. AIBS Bull.51, 633–641 (2001).

    Google Scholar 

  • 16.

    Heck, K. L. Jr., Hays, G. & Orth, R. J. Critical evaluation of the nursery role hypothesis for seagrass meadows. Mar. Ecol. Prog. Ser.253, 123–136 (2003).

    ADS  Google Scholar 

  • 17.

    Boström, C., Jackson, E. L. & Simenstad, C. A. Seagrass landscapes and their effects on associated fauna: a review. Estuar. Coast. Shelf Sci.68, 383–403 (2006).

    ADS  Google Scholar 

  • 18.

    Unsworth, R. K. F. & Cullen, L. C. Recognising the necessity for Indo-Pacific seagrass conservation. Conserv. Lett.3, 63–73 (2010).

    Google Scholar 

  • 19.

    Leopardas, V., Uy, W. & Nakaoka, M. Benthic macrofaunal assemblages in multispecific seagrass meadows of the southern Philippines: variation among vegetation dominated by different seagrass species. J. Exp. Mar. Biol. Ecol.457, 71–80 (2014).

    Google Scholar 

  • 20.

    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. PNAS106, 12377–12381 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 21.

    Short, F. T. & Wyllie-Echeverria, S. Natural and human-induced disturbance of seagrasses. Environ. Conserv.23, 17–27 (1996).

    Google Scholar 

  • 22.

    Short, F. T. et al. Extinction risk assessment of the world’s seagrass species. Biol. Conserv.144, 1961–1971 (2011).

    Google Scholar 

  • 23.

    Duarte, C. M. The future of seagrass meadows. Environ. Conserv.29, 192–206 (2002).

    Google Scholar 

  • 24.

    Hastings, K., Hesp, P. & Kendrick, G. A. Seagrass loss associated with boat moorings at Rottnest Island, Western Australia. Ocean Coast. Manag.26, 225–246 (1995).

    Google Scholar 

  • 25.

    Orth, R. J., Luckenbach, M. L., Marion, S. R., Moore, K. A. & Wilcox, D. J. Seagrass recovery in the Delmarva Coastal Bays, USA. Aquat. Bot.84, 26–36 (2006).

    Google Scholar 

  • 26.

    Ruiz, J. M. & Romero, J. Effects of in situ experimental shading on the Mediterranean seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser.215, 107–120 (2001).

    ADS  Google Scholar 

  • 27.

    Frost, M. T., Rowden, A. A. & Attrill, M. J. Effect of habitat fragmentation on the macroinvertebrate infaunal communities associated with the seagrass Zostera marina L. Aquat. Conserv. Mar. Freshw. Ecosyst.9, 255–263 (1999).

    Google Scholar 

  • 28.

    Hovel, K. A. Habitat fragmentation in marine landscapes: relative effects of habitat cover and configuration on juvenile crab survival in California and North Carolina seagrass beds. Biol. Conserv.110, 401–412 (2003).

    Google Scholar 

  • 29.

    Hovel, K. A. & Lipcius, R. N. Effects of seagrass habitat fragmentation on juvenile blue crab survival and abundance. J. Exp. Mar. Biol. Ecol.271, 75–98 (2002).

    Google Scholar 

  • 30.

    Thomas, C. D. & Mallorie, H. C. Rarity, species richness and conservation: butterflies of the Atlas Mountains in Morocco. Biol. Conserv.33, 95–117 (1985).

    Google Scholar 

  • 31.

    Fahrig, L. Effects of habitat fragmentation on biodiversity. Ann. Rev. Ecol. Evol. Syst.34, 487–515 (2003).

    Google Scholar 

  • 32.

    Fischer, J. & Lindenmayer, D. B. Landscape modification and habitat fragmentation: a synthesis. Glob. Ecol. Biogeogr.16, 265–280 (2007).

    Google Scholar 

  • 33.

    Link, J. Does food web theory work for marine ecosystems?. Mar. Ecol. Prog. Ser.230, 1–9 (2002).

    ADS  Google Scholar 

  • 34.

    Peterson, B. J., Thompson, K. R., Cowan, J. H. Jr. & Heck, K. L. Jr. Comparison of predation pressure in temperate and subtropical seagrass habitats based on chronographic tethering. Mar. Ecol. Prog. Ser.224, 77–85 (2001).

    ADS  Google Scholar 

  • 35.

    Sweatman, J. L., Layman, C. A. & Fourqurean, J. W. Habitat fragmentation has some impacts on aspects of ecosystem functioning in a sub-tropical seagrass bed. Mar. Environ. Res.126, 95–108 (2017).

    CAS  PubMed  Google Scholar 

  • 36.

    Williams, J. A. et al. Seagrass fragmentation impacts recruitment dynamics of estuarine-dependent fish. J. Exp. Mar. Biol. Ecol.479, 97–105 (2016).

    Google Scholar 

  • 37.

    Bell, S. S., Brooks, R. A., Robbins, B. D., Fonseca, M. S. & Hall, M. O. Faunal response to fragmentation in seagrass habitats: implications for seagrass conservation. Biol. Conserv.100, 115–123 (2001).

    Google Scholar 

  • 38.

    McCloskey, R. M. & Unsworth, R. K. F. Decreasing seagrass density negatively influences associated fauna. PeerJ3, e1053 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Ubertini, M. et al. Spatial variability of benthic-pelagic coupling in an estuary ecosystem: consequences for microphytobenthos resuspension phenomenon. PLoS ONE7, e44155 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Welsh, D. T. Nitrogen fixation in seagrass meadows: regulation, plant–bacteria interactions and significance to primary productivity. Ecol. Lett.3, 58–71 (2000).

    Google Scholar 

  • 41.

    Alongi, D. M. The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. Hydrobiologia285, 19–32 (1994).

    CAS  Google Scholar 

  • 42.

    Harrison, P. G. Detrital processing in seagrass systems: a review of factors affecting decay rates, remineralization and detritivory. Aquat. Bot.35, 263–288 (1989).

    Google Scholar 

  • 43.

    Mateo, M. A. & Romero, J. Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Mar. Ecol. Prog. Ser.151, 43–53 (1997).

    ADS  CAS  Google Scholar 

  • 44.

    Barrón, C., Apostolaki, E. T. & Duarte, C. M. Dissolved organic carbon fluxes by seagrass meadows and macroalgal beds. Front. Mar. Sci.1, 42 (2014).

    Google Scholar 

  • 45.

    Wetzel, R. G. & Penhale, P. A. Transport of carbon and excretion of dissolved organic carbon by leaves and roots/rhizomes in seagrasses and their epiphytes. Aquat. Bot.6, 149–158 (1979).

    CAS  Google Scholar 

  • 46.

    Martin, B. C. et al. Low light availability alters root exudation and reduces putative beneficial microorganisms in seagrass roots. Front. Microbiol.8, 2667 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Danovaro, R. Detritus-Bacteria-Meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean. Mar. Biol.127, 1–13 (1996).

    CAS  Google Scholar 

  • 48.

    Lohrer, A. M., Thrush, S. F. & Gibbs, M. M. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature431, 1092–1095 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 49.

    Rosenberg, R. Marine benthic faunal successional stages and related sedimentary activity. Sci. Marina65, 107–119 (2001).

    Google Scholar 

  • 50.

    Austen, M. C. et al. Biodiversity links above and below the marine sediment–water interface that may influence community stability. Biodivers. Conserv.11, 113–136 (2002).

    Google Scholar 

  • 51.

    Fanjul, E., Bazterrica, M. C., Escapa, M., Grela, M. A. & Iribarne, O. Impact of crab bioturbation on benthic flux and nitrogen dynamics of Southwest Atlantic intertidal marshes and mudflats. Estuar. Coast. Shelf Sci.92, 629–638 (2011).

    ADS  CAS  Google Scholar 

  • 52.

    Forster, S. & Graf, G. Impact of irrigation on oxygen flux into the sediment: intermittent pumping by Callianassa subterranea and “piston-pumping” by Lanice conchilega. Mar. Biol.123, 335–346 (1995).

    Google Scholar 

  • 53.

    Snelgrove, P. V. R. The biodiversity of macrofaunal organisms in marine sediments. Biodivers. Conserv.7, 1123–1132 (1998).

    Google Scholar 

  • 54.

    Hyndes, G. A. & Lavery, P. S. Does transported seagrass provide an important trophic link in unvegetated, nearshore areas?. Estuar. Coast. Shelf Sci.63, 633–643 (2005).

    ADS  CAS  Google Scholar 

  • 55.

    Jones, D. A., Ghamrawy, M. & Wahbeh, M. I. Littoral and shallow subtidal environments. In Red Sea (eds Edwards, A. J. & Head, S. M.) 169–193 (Pergamon Press, London, 1987). https://doi.org/10.1016/B978-0-08-028873-4.50014-1.

    Google Scholar 

  • 56.

    Ruiz-Compean, P. et al. Baseline evaluation of sediment contamination in the shallow coastal areas of Saudi Arabian Red Sea. Mar. Pollut. Bull.123, 205–218 (2017).

    CAS  PubMed  Google Scholar 

  • 57.

    Bologna, P. A. X. & Heck, K. L. Impact of habitat edges on density and secondary production of seagrass-associated fauna. Estuaries25, 1033–1044 (2002).

    Google Scholar 

  • 58.

    Calleja, M. L., Al-Otaibi, N. & Morán, X. A. G. Dissolved organic carbon contribution to oxygen respiration in the central Red Sea. Sci. Rep.9, 1–12 (2019).

    CAS  Google Scholar 

  • 59.

    Stedmon, C. A., Markager, S. & Bro, R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem.82, 239–254 (2003).

    CAS  Google Scholar 

  • 60.

    Coble, P. G. Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev.107, 402–418 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 61.

    Gasol, J. M. & Morán, X. A. G. Flow cytometric determination of microbial abundances and its use to obtain indices of community structure and relative activity. In Hydrocarbon and Lipid Microbiology Protocols: Single-Cell and Single-Molecule Methods (eds McGenity, T. J. et al.) 159–1870 (Springer, Berlin, 2015). https://doi.org/10.1007/8623_2015_139.

    Google Scholar 

  • 62.

    Silva, L. et al. Low abundances but high growth rates of coastal heterotrophic bacteria in the Red Sea. Front. Microbiol.9, 3244 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 63.

    Leray, M. & Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. PNAS112, 2076–2081 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 64.

    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucl. Acids Res.41, e1 (2013).

    CAS  PubMed  Google Scholar 

  • 65.

    Oksanen, J. et al. Vegan: community ecology package. R package version 2.5-2, (2018).

  • 66.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).

  • 67.

    Lê, S., Josse, J. & Husson, F. FactoMineR: a package for multivariate analysis. J. Stat. Softw.25, 1–18 (2008).

    Google Scholar 

  • 68.

    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw.22, 1–19 (2007).

    Google Scholar 

  • 69.

    Chen, H. VennDiagram: Generate High-Resolution Venn and Euler Plots (2018).

  • 70.

    Clarke, K. R. & Gorley, R. N. PRIMER v7: User Manual/Tutorial, PRIMER-E: Plymouth (2015).

  • 71.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods13, 581–583 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 72.

    Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl. Acids Res.35, 7188–7196 (2007).

    CAS  PubMed  Google Scholar 

  • 73.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE8, e61217 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 74.

    Keeley, N., Wood, S. A. & Pochon, X. Development and preliminary validation of a multi-trophic metabarcoding biotic index for monitoring benthic organic enrichment. Ecol. Indic.85, 1044–1057 (2018).

    CAS  Google Scholar 

  • 75.

    Lobelle, D., Kenyon, E. J., Cook, K. J. & Bull, J. C. Local competition and metapopulation processes drive long-term seagrass-epiphyte population dynamics. PLoS ONE8, e57072 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 76.

    Ávila, E., Yáñez, B. & Vazquez-Maldonado, L. E. Influence of habitat structure and environmental regime on spatial distribution patterns of macroinvertebrate assemblages associated with seagrass beds in a southern Gulf of Mexico coastal lagoon. Mar. Biol. Res.11, 755–764 (2015).

    Google Scholar 

  • 77.

    Barnes, R. S. K. & Hendy, I. W. Seagrass-associated macrobenthic functional diversity and functional structure along an estuarine gradient. Estuar. Coast. Shelf Sci.164, 233–243 (2015).

    Google Scholar 

  • 78.

    York, P. H., Hyndes, G. A., Bishop, M. J. & Barnes, R. S. K. Faunal assemblages of seagrass ecosystems. In Seagrasses of Australia: Structure, Ecology and Conservation (eds Larkum, A. W. D. et al.) 541–588 (Springer, Berlin, 2018). https://doi.org/10.1007/978-3-319-71354-0_17.

    Google Scholar 

  • 79.

    Magni, P., Como, S., Kamijo, A. & Montani, S. Effects of Zostera marina on the patterns of spatial distribution of sediments and macrozoobenthos in the boreal lagoon of Furen (Hokkaido, Japan). Mar. Environ. Res.131, 90–102 (2017).

    CAS  PubMed  Google Scholar 

  • 80.

    Thomsen, M. S. et al. Secondary foundation species enhance biodiversity. Nat. Ecol. Evol.2, 634 (2018).

    PubMed  Google Scholar 

  • 81.

    Attrill, M. J., Strong, J. A. & Rowden, A. A. Are macroinvertebrate communities influenced by seagrass structural complexity?. Ecography23, 114–121 (2000).

    Google Scholar 

  • 82.

    Lee, S. Y., Fong, C. W. & Wu, R. S. S. The effects of seagrass (Zostera japonica) canopy structure on associated fauna: a study using artificial seagrass units and sampling of natural beds. J. Exp. Mar. Biol. Ecol.259, 23–50 (2001).

    PubMed  Google Scholar 

  • 83.

    Nakamura, Y. & Sano, M. Comparison of invertebrate abundance in a seagrass bed and adjacent coral and sand areas at Amitori Bay, Iriomote Island, Japan. Fish. Sci.71, 543–550 (2005).

    CAS  Google Scholar 

  • 84.

    Barrio Froján, C. R. S. et al. The importance of bare marine sedimentary habitats for maintaining high polychaete diversity and the implications for the design of marine protected areas. Aquat. Conserv. Mar. Freshw. Ecosyst.19, 748–757 (2009).

    Google Scholar 

  • 85.

    Barnes, R. S. K. & Barnes, M. K. S. Spatial uniformity of biodiversity is inevitable if the available species are distributed independently of each other. Mar. Ecol. Prog. Ser.516, 263–266 (2014).

    ADS  Google Scholar 

  • 86.

    Webster, P. J., Rowden, A. A. & Attrill, M. J. Effect of shoot density on the infaunal macro-invertebrate community within a Zostera marina seagrass bed. Estuar. Coast. Shelf Sci.47, 351–357 (1998).

    ADS  Google Scholar 

  • 87.

    Bowden, D. A., Rowden, A. A. & Attrill, M. J. Effect of patch size and in-patch location on the infaunal macroinvertebrate assemblages of Zostera marina seagrass beds. J. Exp. Mar. Biol. Ecol.259, 133–154 (2001).

    PubMed  Google Scholar 

  • 88.

    Turner, S. J. et al. Seagrass patches and landscapes: the influence of wind-wave dynamics and hierarchical arrangements of spatial structure on macrofaunal seagrass communities. Estuaries22, 1016–1032 (1999).

    Google Scholar 

  • 89.

    Tanner, J. E. Edge effects on fauna in fragmented seagrass meadows. Austral Ecol.30, 210–218 (2005).

    Google Scholar 

  • 90.

    Włodarska-Kowalczuk, M., Jankowska, E., Kotwicki, L. & Balazy, P. Evidence of season-dependency in vegetation effects on macrofauna in temperate seagrass meadows (Baltic Sea). PLoS ONE9, e100788 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 91.

    Calleja, M. L., Barrón, C., Hale, J. A., Frazer, T. K. & Duarte, C. M. Light regulation of benthic sulfate reduction rates mediated by seagrass (Thalassia testudinum) metabolism. Estuar. Coasts J ERF29, 1255–1264 (2006).

    CAS  Google Scholar 

  • 92.

    Barnes, R. S. K. & Barnes, M. K. S. Shore height and differentials between macrobenthic assemblages in vegetated and unvegetated areas of an intertidal sandflat. Estuar. Coast. Shelf Sci.106, 112–120 (2012).

    ADS  Google Scholar 

  • 93.

    Agawin, N. S. R., Duarte, C. M., Fortes, M. D., Uri, J. S. & Vermaat, J. E. Temporal changes in the abundance, leaf growth and photosynthesis of three co-occurring Philippine seagrasses. J. Exp. Mar. Biol. Ecol.260, 217–239 (2001).

    PubMed  Google Scholar 

  • 94.

    Pereg, L. L., Lipkin, Y. & Sar, N. Different niches of the Halophila stipulacea seagrass bed harbor distinct populations of nitrogen fixing bacteria. Mar. Biol.119, 327–333 (1994).

    CAS  Google Scholar 

  • 95.

    Holmer, M., Duarte, C., Boschker, H. & Barrón, C. Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquat. Microb. Ecol.36, 227–237 (2004).

    Google Scholar 

  • 96.

    Barberá-Cebrián, C., Sánchez-Jerez, P. & Ramos-Esplá, A. Fragmented seagrass habitats on the Mediterranean coast, and distribution and abundance of mysid assemblages. Mar. Biol.141, 405–413 (2002).

    Google Scholar 

  • 97.

    Ringold, P. Burrowing, root mat density, and the distribution of fiddler crabs in the eastern United States. J. Exp. Mar. Biol. Ecol.36, 11–21 (1979).

    Google Scholar 

  • 98.

    Ricart, A. M. et al. Variability of sedimentary organic carbon in patchy seagrass landscapes. Mar. Pollut. Bull.100, 476–482 (2015).

    CAS  PubMed  Google Scholar 

  • 99.

    Samper-Villarreal, J., Lovelock, C. E., Saunders, M. I., Roelfsema, C. & Mumby, P. J. Organic carbon in seagrass sediments is influenced by seagrass canopy complexity, turbidity, wave height, and water depth. Limnol. Oceanogr.61, 938–952 (2016).

    ADS  Google Scholar 

  • 100.

    Serra, T., Oldham, C. & Colomer, J. Local hydrodynamics at edges of marine canopies under oscillatory flows. PLoS ONE13, e0201737 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 101.

    Choat, J. H. & Kingett, P. D. The influence of fish predation on the abundance cycles of an algal turf invertebrate fauna. Oecologia54, 88–95 (1982).

    ADS  CAS  PubMed  Google Scholar 

  • 102.

    Nakamura, Y., Horinouchi, M., Nakai, T. & Sano, M. Food habits of fishes in a seagrass bed on a fringing coral reef at Iriomote Island, southern Japan. Ichthyol. Res.50, 0015–0022 (2003).

    Google Scholar 

  • 103.

    Eklöf, J. S., de la Torre Castro, M., Adelsköld, L., Jiddawi, N. S. & Kautsky, N. Differences in macrofaunal and seagrass assemblages in seagrass beds with and without seaweed farms. Estuar. Coast. Shelf Sci.63, 385–396 (2005).

    ADS  Google Scholar 

  • 104.

    Díaz-Cárdenas, C., Patel, B. K. C. & Baena, S. Tistlia consotensisgen. nov., sp. an aerobic, chemoheterotrophic, free-living, nitrogen-fixing alphaproteobacterium, isolated from a Colombian saline spring. Int. J. Syst. Evol. Microbiol.60, 1437–1443 (2010).

    PubMed  Google Scholar 

  • 105.

    Sun, F. et al. Seagrass (Zostera marina) colonization promotes the accumulation of diazotrophic bacteria and alters the relative abundances of specific bacterial lineages involved in benthic carbon and sulfur cycling. Appl. Environ. Microbiol.81, 6901–6914 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 106.

    Brown, S. M. & Jenkins, B. D. Profiling gene expression to distinguish the likely active diazotrophs from a sea of genetic potential in marine sediments. Environ. Microbiol.16, 3128–3142 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 107.

    Santos, R., Lirman, D. & Pittman, S. Long-term spatial dynamics in vegetated seascapes: fragmentation and habitat loss in a human-impacted subtropical lagoon. Mar. Ecol.37(1), 200–214. https://doi.org/10.1111/maec.12259 (2015).

    ADS  Article  Google Scholar 

  • 108.

    Irlandi, E. & Crawford, M. Habitats linkages: the effect of intertidal saltmarshes and adjacent habitats on abundance, movement and growth of an estuarine fish. Oecologia110, 222–230 (1997).

    ADS  CAS  PubMed  Google Scholar 

  • 109.

    Boström, C., Pittman, S. J., Simenstad, C. & Kneib, R. T. Seascape ecology of coastal biogenic habitats: advances, gaps, and challenges. Mar. Ecol. Prog. Ser.427, 191–218 (2011).

    ADS  Google Scholar 

  • 110.

    Mumby, P. J. Connectivity of reef fish between mangroves and coral reefs: algorithms for the design of marine reserves at seascape scales. Biol. Conserv.128, 215–222 (2006).

    Google Scholar 

  • 111.

    Haila, Y. A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecol. Appl.12, 321–334 (2002).

    Google Scholar 

  • 112.

    Barnes, R. S. K. Distribution patterns of macrobenthic biodiversity in the intertidal seagrass beds of an estuarine system, and their conservation significance. Biodivers. Conserv.22, 357–372 (2013).

    Google Scholar 

  • 113.

    Barnes, R. S. K. & Hamylton, S. On the very edge: faunal and functional responses to the interface between benthic seagrass and unvegetated sand assemblages. Mar. Ecol. Prog. Ser.553, 33–48 (2016).

    ADS  Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: Asegun Henry on five “grand thermal challenges” to stem the tide of global warming

    MIT researchers and Wyoming representatives explore energy and climate solutions