in

The role of soil carbon in natural climate solutions

  • 1.

    Banwart, S. et al. Benefits of soil carbon: report on the outcomes of an international scientific committee on problems of the environment rapid assessment workshop. Carbon Manage. 5, 185–192 (2014).

    • CAS
    • Google Scholar
  • 2.

    Wood, S. A. & Baudron, F. Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agric. Ecosyst. Environ. 266, 100–108 (2018).

    • CAS
    • Google Scholar
  • 3.

    Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    • CAS
    • Google Scholar
  • 4.

    Jenkinson, D. S., Adams, D. E. & Wild, A. Model estimates of CO2 emissions from soil in response to global warming. Nature 351, 304–306 (1991).

    • CAS
    • Google Scholar
  • 5.

    Pries, C. E. H., Castanha, C., Porras, R. C. & Torn, M. S. The whole-soil carbon flux in response to warming. Science 355, 1420–1423 (2017).

    • Google Scholar
  • 6.

    Smith, P. et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 363, 789–813 (2008).

    • CAS
    • Google Scholar
  • 7.

    Smith, P. et al. Land-management options for greenhouse gas removal and their impacts on ecosystem services and the Sustainable Development Goals. Annu. Rev. Environ. Resour. 44, 255–286 (2019).

    • Google Scholar
  • 8.

    Rumpel, C. et al. Put more carbon in soils to meet Paris climate pledges. Nature 564, 32–34 (2018).

    • CAS
    • Google Scholar
  • 9.

    Vermeulen, S. et al. A global agenda for collective action on soil carbon. Nat. Sustain. 2, 2–4 (2019).

    • Google Scholar
  • 10.

    von Unger, M. & Emmer, I. Carbon Market Incentives to Conserve, Restore and Enhance Soil Carbon (The Nature Conservancy, 2018).

  • 11.

    Fuss, S. et al. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).

    • Google Scholar
  • 12.

    Hamrick, K. & Gallant, M. Fertile Ground: State of Forest Carbon Finance (Forest Trends’ Ecosystem Marketplace, 2017).

  • 13.

    Koronivia Joint Work on Agriculture Decision 4/COP.23 (UNFCCC, 2018); https://unfccc.int/decisions

  • 14.

    Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. 22, 1315–1324 (2016).

    • Google Scholar
  • 15.

    West, T. O. & Six, J. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Climatic Change 80, 25–41 (2006).

    • Google Scholar
  • 16.

    Sommer, R. & Bossio, D. Dynamics and climate change mitigation potential of soil organic carbon sequestration. J. Environ. Manage. 144, 83–87 (2014).

    • CAS
    • Google Scholar
  • 17.

    Dass, P., Houlton, B. Z., Wang, Y. & Warlind, D. Grasslands may be more reliable carbon sinks than forests in California. Environ. Res. Lett. 13, 074027 (2018).

    • Google Scholar
  • 18.

    Wang, J., Xiong, Z. & Kuzyakov, Y. Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8, 512–523 (2015).

    • Google Scholar
  • 19.

    Schlesinger, W. H. & Amundson, R. Managing for soil carbon sequestration: let’s get realistic. Glob. Change Biol. 25, 386–389 (2019).

    • Google Scholar
  • 20.

    Amundson, R. & Biardeau, L. Opinion: soil carbon sequestration is an elusive climate mitigation tool. Proc. Natl Acad. Sci. USA 115, 11652–11656 (2018).

    • CAS
    • Google Scholar
  • 21.

    White, R. E., Davidson, B., Lam, S. K. & Chen, D. A critique of the paper ‘Soil carbon 4 per mille’ by Minasny et al. (2017). Geofís. Int. 309, 115–117 (2018).

    • Google Scholar
  • 22.

    McLauchlan, K. K., Hobbie, S. E. & Post, W. M. Conversion from agriculture to grassland builds soil organic matter on decadal timescales. Ecol. Appl. 16, 143–153 (2006).

    • Google Scholar
  • 23.

    Smith, P. et al. Do grasslands act as a perpetual sink for carbon? Glob. Change Biol. 20, 2708–2711 (2014).

    • Google Scholar
  • 24.

    Gren, I.-M. & Aklilu, A. Z. Policy design for forest carbon sequestration: a review of the literature. For. Policy Econ. 70, 128–136 (2016).

    • Google Scholar
  • 25.

    Murray, B. C., Sohngen, B. & Ross, M. T. Economic consequences of consideration of permanence, leakage and additionality for soil carbon sequestration projects. Climatic Change 80, 127–143 (2006).

    • Google Scholar
  • 26.

    Joosten, H., Couwenberg, J., von Unger, M. & Emmer I. Peatlands, Forests and the Climate Architecture: Setting Incentives through Markets and Enhanced Accounting (German Environment Agency (UBA Climate Change), 2016); https://go.nature.com/3c9wZMy

  • 27.

    von Unger, M., Emmer, I., Joosten, H. & Couwenberg, J. Designing an International Peatland Carbon Standard, Criteria, Best Practices and Opportunities (German Environment Agency (UBA Climate Change), 2019).

  • 28.

    Federici, S., Lee, D. & Herold, M. Forest Mitigation: A Permanent Contribution to the Paris Agreement? (Norwegian International Climate and Forest Initiative, 2018).

  • 29.

    Burke, PaulJ. Undermined by adverse selection: Australia’s direct action abatement subsidies. Econ. Pap. 35, 216–229 (2016).

    • Google Scholar
  • 30.

    Perera, O., Wuennenberg, L., Uzsoki, D. & Cuéllar, A. Financing Soil Remediation: Exploring the Use of Financing Instruments to Blend Public and Private Capital (International Institute for Sustainable Development, 2018).

  • 31.

    Liagre, L., Lara Almuedo, P., Besacier, C. & Conigliaro, M. Sustainable Financing for Forest and Landscape Restoration: Opportunities, Challenges and the Way Forward (FAO, UNCCD, 2015).

  • 32.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    • CAS
    • Google Scholar
  • 33.

    Sanderman, J. & Baldock, J. A. Accounting for soil carbon sequestration in national inventories: a soil scientist’s perspective. Environ. Res. Lett. 5, 034003 (2010).

    • Google Scholar
  • 34.

    Nave, L. E. et al. Reforestation can sequester two petagrams of carbon in US topsoils in a century. Proc. Natl Acad. Sci. USA 115, 2776–2781 (2018).

    • CAS
    • Google Scholar
  • 35.

    Nordhaus, W. Estimates of the social cost of carbon: concepts and results from the DICE-2013R model and alternative approaches. J. Assoc. Environ. Resour. Econ. 1, 273–312 (2015).

    • Google Scholar
  • 36.

    Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 811–922 (IPCC, Cambridge Univ. Press, 2014).

  • 37.

    de Coninck, H. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 4 (IPCC, WMO, 2018).

  • 38.

    Sanderman, J. et al. Carbon sequestration under subtropical perennial pastures I: overall trends. Soil Res. 51, 760–770 (2014).

    • Google Scholar
  • 39.

    Zomer, R. J., Bossio, D. A., Sommer, R. & Verchot, L. V. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7, 15554 (2017).

    • Google Scholar
  • 40.

    Powlson, D. S. et al. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Change 4, 678–683 (2014).

    • Google Scholar
  • 41.

    Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R. & Lehmann, J. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ. Sci. Technol. 44, 827–833 (2010).

    • CAS
    • Google Scholar
  • 42.

    Lee, J. W., Hawkins, B., Li, X. & Day, D. M. in Advanced Biofuels and Bioproducts (ed. Lee, J. W.) 57–68 (Springer, 2013).

  • 43.

    Conant, R. T., Paustian, K. & Elliott, E. T. Grassland management and conversion into grassland: effects on soil carbon. Ecol. Appl. 11, 343–355 (2001).

    • Google Scholar
  • 44.

    Toensmeier, E. The Carbon Farming Solution (Chelsea Green, 2016).

  • 45.

    Kell, D. B. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Ann. Bot. 108, 407–418 (2011).

    • CAS
    • Google Scholar
  • 46.

    McBratney, A., Koppi, T. & Field, D. J. Radical soil management for Australia: a rejuvenation process. Geoderma Reg. 7, 132–136 (2016).

    • Google Scholar
  • 47.

    Urban Biocycles (Ellen MacArthur Foundation, 2017).

  • 48.

    Ryals, R., Hartman, M. D., Parton, W. J., DeLonge, M. S. & Silver, W. L. Long-term climate change mitigation potential with organic matter management on grasslands. Ecol. Appl. 25, 531–545 (2015).

    • Google Scholar
  • 49.

    Gravuer, K., Gennet, S. & Throop, H. L. Organic amendment additions to rangelands: a meta-analysis of multiple ecosystem outcomes. Glob. Change Biol. 25, 1152–1170 (2019).

    • Google Scholar
  • 50.

    Oldfield, E. E., Wood, S. A. & Bradford, M. A. Direct effects of soil organic matter on productivity mirror those observed with organic amendments. Plant Soil 423, 363–373 (2017).

    • Google Scholar
  • 51.

    Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).

    • CAS
    • Google Scholar
  • 52.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    • CAS
    • Google Scholar
  • 53.

    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  • 54.

    IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (IPCC, 2019).

  • 55.

    Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land‐use change on soil organic carbon stocks—a meta‐analysis. Glob. Change Biol. 17, 1658–1670 (2011).

    • Google Scholar
  • 56.

    Powers, J. S., Corre, M. D., Twine, T. E. & Veldkamp, E. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc. Natl Acad. Sci. USA 108, 6318–6322 (2011).

    • CAS
    • Google Scholar
  • 57.

    Bremer, L. L. & Farley, K. A. Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers. Conserv. 19, 3893–3915 (2010).

    • Google Scholar
  • 58.

    Brockerhoff, E. G., Jactel, H., Parrotta, J. A., Quine, C. P. & Sayer, J. Plantation forests and biodiversity: oxymoron or opportunity? Biodivers. Conserv. 17, 925–951 (2008).

    • Google Scholar
  • 59.

    Erb, K.-H. et al. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun. 7, 11382 (2016).

    • CAS
    • Google Scholar
  • 60.

    Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    • CAS
    • Google Scholar
  • 61.

    Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).

    • CAS
    • Google Scholar
  • 62.

    Poeplau, C. & Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysis. Agric. Ecosyst. Environ. 200, 33–41 (2015).

    • CAS
    • Google Scholar
  • 63.

    Chendev, Y. G. et al. in Soil Carbon Progress in Soil Science (eds Hartemink, A. E. & McSweeney, K.) 475–482 (Springer, 2014).

  • 64.

    Wang, F. et al. Biomass accumulation and carbon sequestration in four different aged Casuarina equisetifolia coastal shelterbelt plantations in South China. PLoS ONE 8, e77449 (2013).

    • CAS
    • Google Scholar
  • 65.

    Sauer, T. J., Cambardella, C. A. & Brandle, J. R. Soil carbon and tree litter dynamics in a red cedar–scotch pine shelterbelt. Agrofor. Syst. 71, 163–174 (2007).

    • Google Scholar
  • 66.

    Tsonkova, P., Böhm, C., Quinkenstein, A. & Freese, D. Ecological benefits provided by alley cropping systems for production of woody biomass in the temperate region: a review. Agrofor. Syst. 85, 133–152 (2012).

    • Google Scholar
  • 67.

    Lu, Sen, Meng, P., Zhang, J., Yin, C. & Sun, S. Changes in soil organic carbon and total nitrogen in croplands converted to walnut-based agroforestry systems and orchards in southeastern Loess Plateau of China. Environ. Monit. Assess. 187, 688 (2015).

    • Google Scholar
  • 68.

    Oelbermann, M. et al. Soil carbon dynamics and residue stabilization in a Costa Rican and southern Canadian alley cropping system. Agrofor. Syst. 68, 27–36 (2006).

    • Google Scholar
  • 69.

    Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1027 (1999).

    • CAS
    • Google Scholar
  • 70.

    Murdiyarso, D., Hergoualc’h, K. & Verchot, L. V. Opportunities for reducing greenhouse gas emissions in tropical peatlands. Proc. Natl Acad. Sci. USA 107, 19655–19660 (2010).

    • CAS
    • Google Scholar
  • 71.

    Adams, J. M. & Faure, H. A new estimate of changing carbon storage on land since the last glacial maximum, based on global land ecosystem reconstruction. Glob. Planet. Change 16–17, 3–24 (1998).

    • Google Scholar
  • 72.

    Joosten, H. The Global Peatland CO 2Picture (Wetlands International, 2009).

  • 73.

    Nayak, D. et al. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agric. Ecosyst. Environ. 209, 108–124 (2015).

    • CAS
    • Google Scholar
  • 74.

    Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyre, B. D. Methane emissions partially offset ‘blue carbon’ burial in mangroves. Sci. Adv. 4, 4985 (2018).

    • Google Scholar
  • 75.

    Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    • Google Scholar
  • 76.

    Bouillon, S. et al. Mangrove production and carbon sinks: a revision of global budget estimates. Glob. Biogeochem. Cycles 22, GB2013 (2008).

    • Google Scholar
  • 77.

    Pendleton, L. et al. Estimating global ‘blue carbon’ emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).

    • CAS
    • Google Scholar
  • 78.

    Jardine, S. L. & Siikamäki, J. V. A global predictive model of carbon in mangrove soils. Environ. Res. Lett. 9, 104013 (2014).

    • Google Scholar
  • 79.

    Hamilton, S. E. & Friess, D. A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Change 8, 240–244 (2018).

    • CAS
    • Google Scholar
  • 80.

    Sanderman, J. et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 13, 055002 (2018).

    • Google Scholar
  • 81.

    Griscom, B. W. et al. We need both natural and energy solutions to stabilize our climate. Glob. Change Biol. 25, 1889–1890 (2019).

    • Google Scholar

  • Source: Ecology - nature.com

    Native plants for greening Mediterranean agroecosystems

    Scientists quantify how wave power drives coastal erosion