in

The timing and effect of the earliest human arrivals in North America

  • 1.

    Meltzer, D. J. The Great Paleolithic War: How Science Forged an Understanding of America’s Ice Age Past (Univ. Chicago Press, 2015).

  • 2.

    Mix, A. C., Bard, E. & Schneider, R. Environmental processes of the Ice Age: land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20, 627–657 (2001).

    ADS  Google Scholar 

  • 3.

    Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).

    ADS  Google Scholar 

  • 5.

    Waters, M. R. & Stafford, T. W. Jr. Redefining the age of Clovis: implications for the peopling of the Americas. Science 315, 1122–1126 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 6.

    Dillehay, T. D. Monte Verde, a Late Pleistocene Settlement in Chile: The Archaeological Context and Interpretation (Smithsonian Institution Press, 1997).

  • 7.

    Williams, T. J. et al. Evidence of an early projectile point technology in North America at the Gault site, Texas, USA. Sci. Adv. 4, eaar5954 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Waters, M. R. et al. Pre-Clovis projectile points at the Debra L. Friedkin site, Texas–implications for the Late Pleistocene peopling of the Americas. Sci. Adv. 4, eaat4505 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Haynes, G. The millennium before Clovis. PaleoAmerica 1, 134–162 (2015).

    Google Scholar 

  • 10.

    Sandweiss, D. H. et al. Quebrada Jaguay: early South American maritime adaptations. Science 281, 1830–1832 (1998).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    Goebel, T. & Keene, J. L. in Archaeology in the Great Basin and Southwest: Papers in Honor of Don D. Fowler (eds Parezo, N. J. & Janetski, J. C.) 35–60 (Univ. Utah Press, 2014).

  • 12.

    Méndez, C., Jackson, D., Seguel, R. & Delaunay, A. N. Early high-quality lithic procurement in the semiarid north of Chile. Curr. Res. Pleistocene 27, 19–21 (2010).

    Google Scholar 

  • 13.

    Méndez, C. & Jackson, D. Terminal Pleistocene lithic technology and use of space in Central Chile. Chungara (Arica) 47, 53–65 (2015).

    Google Scholar 

  • 14.

    Jones, K. B., Hodgins, G. W. L. & Sandweiss, D. H. Radiocarbon chronometry of site QJ-280, Quebrada Jaguay, a Terminal Pleistocene to Early Holocene fishing site in southern Peru. J. Island Coast. Archaeol. 14, 82–100 (2017).

    Google Scholar 

  • 15.

    Davis, L. G. et al. Late Upper Paleolithic occupation at Cooper’s Ferry, Idaho, USA shows Americas settled before ~16,000 years ago. Science 365, 891–897 (2019).

    ADS  CAS  Google Scholar 

  • 16.

    Braje, T. J., Dillehay, T. D., Erlandson, J. M., Klein, R. G. & Rick, T. C. Finding the first Americans. Science 358, 592–594 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 17.

    Potter, B. A. et al. Current evidence allows multiple models for the peopling of the Americas. Sci. Adv. 4, eaat5473 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Bronk Ramsey, C. Development of the radiocarbon program OxCal. Radiocarbon 43, 355–363 (2001).

    Google Scholar 

  • 19.

    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Google Scholar 

  • 20.

    Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. 111, D06102 (2006).

    ADS  Google Scholar 

  • 21.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS  Google Scholar 

  • 22.

    Adolphi, F. et al. Connecting the Greenland ice-core and U/Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard–Oeschger events. Clim. Past 14, 1755–1781 (2018).

    Google Scholar 

  • 23.

    Ray, N. & Adams, J. A GIS-based vegetation map of the world at the last glacial maximum (25,000–15,000 BP). Internet Archaeol. 11, https://doi.org/10.11141/ia.11.2 (2001).

  • 24.

    Jackson, S. T. et al. Vegetation and environment in Eastern North America during the Last Glacial Maximum. Quat. Sci. Rev. 19, 489–508 (2000).

    ADS  Google Scholar 

  • 25.

    Williams, J. W. Variations in tree cover in North America since the Last Glacial Maximum. Global Planet. Change 35, 1–23 (2003).

    ADS  MathSciNet  Google Scholar 

  • 26.

    Lyle, M. et al. Out of the tropics: the Pacific, Great Basin lakes, and late Pleistocene water cycle in the western United States. Science 337, 1629–1633 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 27.

    Goebel, T., Hockett, B., Adams, K. D., Rhode, D. & Graf, K. Climate, environment, and humans in North America’s Great Basin during the Younger Dryas, 12,900–11,600 calendar years ago. Quat. Int. 242, 479–501 (2011).

    Google Scholar 

  • 28.

    Menking, K. M., Anderson, R. Y., Shafike, N. G., Syed, K. H. & Allen, B. D. Wetter or colder during the Last Glacial Maximum? Revisiting the pluvial lake question in southwestern North America. Quat. Res. 62, 280–288 (2004).

    Google Scholar 

  • 29.

    Kirby, M. E. et al. A late Wisconsin (32–10k cal a BP) history of pluvials, droughts and vegetation in the Pacific south-west United States (Lake Elsinore, CA). J. Quat. Sci. 33, 238–254 (2018).

    Google Scholar 

  • 30.

    Ibarra, D. E. et al. Warm and cold wet states in the western United States during the Pliocene–Pleistocene. Geology 46, 355–358 (2018).

    ADS  Google Scholar 

  • 31.

    Feakins, S. J., Wu, M. S., Ponton, C. & Tierney, J. E. Biomarkers reveal abrupt switches in hydroclimate during the last glacial in southern California. Earth Planet. Sci. Lett. 515, 164–172 (2019).

    ADS  CAS  Google Scholar 

  • 32.

    Stanford, D. J. & Bradley, B. A. Across Atlantic Ice: The Origin of America’s Clovis Culture (Univ of California Press, 2013).

  • 33.

    Aubry, T. & Almeida, M. Analyse critique des bases chronostratigraphiques de la structuration du Solutréen. Le Solutréen 40, 37e52 (2013).

    Google Scholar 

  • 34.

    Eren, M. I., Patten, R. J., O’Brien, M. J. & Meltzer, D. J. Refuting the technological cornerstone of the Ice-Age Atlantic crossing hypothesis. J. Archaeol. Sci. 40, 2934–2941 (2013).

    Google Scholar 

  • 35.

    Raff, J. A. & Bolnick, D. A. Does mitochondrial haplogroup X indicate ancient trans-Atlantic migration to the Americas? A critical re-evaluation. PaleoAmerica 1, 297–304 (2015).

    Google Scholar 

  • 36.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    ADS  Google Scholar 

  • 37.

    Spratt, R. M. & Lisiecki, L. E. A Late Pleistocene sea level stack. Clim. Past 12, 1079–1092 (2016).

    Google Scholar 

  • 38.

    Pico, T., Mitrovica, J. X., Ferrier, K. L. & Braun, J. Global ice volume during MIS 3 inferred from a sea-level analysis of sedimentary core records in the Yellow River Delta. Quat. Sci. Rev. 152, 72–79 (2016).

    ADS  Google Scholar 

  • 39.

    Batchelor, C. L. et al. The configuration of Northern Hemisphere ice sheets through the Quaternary. Nat. Commun. 10, 3713 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Dalton, A. S., Finkelstein, S. A., Barnett, P. J. & Forman, S. L. Constraining the Late Pleistocene history of the Laurentide Ice Sheet by dating the Missinaibi Formation, Hudson Bay Lowlands, Canada. Quat. Sci. Rev. 146, 288–299 (2016).

    ADS  Google Scholar 

  • 41.

    Pico, T., Mitrovica, J. X. & Mix, A. C. Sea level fingerprinting of the Bering Strait flooding history detects the source of the Younger Dryas climate event. Sci. Adv. 6, eaay2935 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Dyke, A. S. An outline of North American deglaciation with emphasis on central and northern Canada. Develop. Quat. Sci. 2, 373–424 (2004).

    Google Scholar 

  • 43.

    Lesnek, A. J., Briner, J. P., Lindqvist, C., Baichtal, J. F. & Heaton, T. H. Deglaciation of the Pacific coastal corridor directly preceded the human colonization of the Americas. Sci. Adv. 4, eaar5040 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Tamm, E. et al. Beringian standstill and spread of Native American founders. PLoS ONE 2, e829 (2007).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Moreno-Mayar, J. V. et al. Early human dispersals within the Americas. Science 362, eaav2621 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Moreno-Mayar, J. V. et al. Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. Nature 553, 203–207 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 47.

    Ardelean, C. F. et al. Evidence of human occupation in Mexico around the Last Glacial Maximum. Nature https://doi.org/10.1038/s41586-020-2509-0 (2020).

  • 48.

    Goodyear, A. C. in Paleoamerican Origins: Beyond Clovis (eds. Bonnichesen, R. et al.) 103–112 (Centre for the Study of the First Americans, 2005).

  • 49.

    Llamas, B. et al. Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas. Sci. Adv. 2, e1501385 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Pinotti, T. et al. Y chromosome sequences reveal a short Beringian standstill, rapid expansion, and early population structure of Native American founders. Curr. Biol. 29, 149–157.e3 (2019).

    CAS  PubMed  Google Scholar 

  • 51.

    Bergström, A. et al. Insights into human genetic variation and population history from 929 diverse genomes. Science 367, eaay5012 (2020).

    PubMed  Google Scholar 

  • 52.

    Raghavan, M. et al. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science 349, aab3884 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    Rasmussen, M. et al. The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature 506, 225–229 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Reich, D. et al. Reconstructing Native American population history. Nature 488, 370–374 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Scheib, C. L. et al. Ancient human parallel lineages within North America contributed to a coastal expansion. Science 360, 1024–1027 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 56.

    Erlandson, J. M. & Braje, T. J. From Asia to the Americas by boat? Paleogeography, paleoecology, and stemmed points of the northwest Pacific. Quat. Int. 239, 28–37 (2011).

    Google Scholar 

  • 57.

    Williams, T. J. & Madsen, D. B. The Upper Paleolithic of the Americas. PaleoAmerica 6, 4–22 (2019).

    Google Scholar 

  • 58.

    Gilbert, M. T. P. et al. DNA from pre-Clovis human coprolites in Oregon, North America. Science 320, 786–789 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 59.

    Pedersen, M. W. et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature 537, 45–49 (2016).

    ADS  CAS  Google Scholar 

  • 60.

    Heintzman, P. D. et al. Bison phylogeography constrains dispersal and viability of the ice free corridor in western Canada. Proc. Natl Acad. Sci. USA 113, 8057–8063 (2016).

    CAS  PubMed  Google Scholar 

  • 61.

    Darvill, C. M., Menounos, B., Goehring, B. M., Lian, O. B. & Caffee, M. W. Retreat of the western Cordilleran Ice Sheet margin during the last deglaciation. Geophys. Res. Lett. 45, 9710–9720 (2018).

    ADS  Google Scholar 

  • 62.

    Taylor, M. A., Hendy, I. L. & Pak, D. K. Deglacial ocean warming and marine margin retreat of the Cordilleran Ice Sheet in the North Pacific Ocean. Earth Planet. Sci. Lett. 403, 89–98 (2014).

    ADS  CAS  Google Scholar 

  • 63.

    Martin, P. S. The discovery of America. Science 179, 969–974 (1973).

    ADS  CAS  PubMed  Google Scholar 

  • 64.

    Surovell, T. A., Pelton, S. R., Anderson-Sprecher, R. & Myers, A. D. Test of Martin’s overkill hypothesis using radiocarbon dates on extinct megafauna. Proc. Natl Acad. Sci. USA 113, 886–891 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 65.

    Robinson, G. S., Pigott Burney, L. & Burney, D. A. Landscape paleoecology and megafaunal extinction in southwestern New York state. Ecol. Monogr. 75, 295–315 (2005).

    Google Scholar 

  • 66.

    Guthrie, R. D. New carbon dates link climatic change with human colonization and Pleistocene extinctions. Nature 441, 207–209 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 67.

    Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 68.

    Prescott, G. W., Williams, D. R., Balmford, A., Green, R. E. & Manica, A. Quantitative global analysis of the role of climate and people in explaining Late Quaternary megafaunal extinctions. Proc. Natl Acad. Sci. USA 109, 4527–4531 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 69.

    Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 70.

    Araujo, B. B. A., Oliveira-Santos, L. G. R., Lima-Ribeiro, M. S., Diniz-Filho, J. A. F. & Fernandez, F. A. S. Bigger kill than chill: the uneven roles of humans and climate on Late Quaternary megafaunal extinctions. Quat. Int. 431, 216–222 (2017).

    Google Scholar 

  • 71.

    Firestone, R. B. et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proc. Natl Acad. Sci. USA 104, 16016–16021 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 72.

    Broughton, J. M. & Weitzel, E. M. Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nat. Commun. 9, 5441 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 73.

    Grayson, D. K. & Meltzer, D. J. Revisiting Paleoindian exploitation of extinct North American mammals. J. Archaeol. Sci. 56, 177–193 (2015).

    Google Scholar 

  • 74.

    Buck, C. E. & Bard, E. A calendar chronology for Pleistocene mammoth and horse extinction in North America based on Bayesian radiocarbon calibration. Quat. Sci. Rev. 26, 2031–2035 (2007).

    ADS  Google Scholar 

  • 75.

    Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).

    ADS  CAS  Google Scholar 

  • 76.

    Bueno, L., Politis, G., Prates, L. & Steele, J. A Late Pleistocene/early Holocene archaeological 14C database for Central and South America: palaeoenvironmental contexts and demographic interpretations. Quat. Int. 301, 1–158 (2013).

    Google Scholar 

  • 77.

    Bond, J. D. Paleodrainage map of Beringia, Yukon Geological Survey, open file 2019-2. http://data.geology.gov.yk.ca/Reference/81642#InfoTab (2019).

  • 78.

    Clark, G. A. in The Settlement of the American Continents (ed. Barton, C. M. et al.) 103–112 (Univ. Arizona Press, 2004).

  • 79.

    Harris, E. C. Principles of Archaeological Stratigraphy (Elsevier, 2014).

  • 80.

    Gelfand, A. E. & Smith, A. F. M. Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85, 398–409 (1990).

    MathSciNet  MATH  Google Scholar 

  • 81.

    Gilks, W. R., Richardson, S. & Spiegelhalter, D. Markov Chain Monte Carlo in Practice (Chapman and Hall/CRC, 1995).

  • 82.

    Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425–430 (1995).

    CAS  Google Scholar 

  • 83.

    Bronk Ramsey, C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 1023–1045 (2009).

    Google Scholar 

  • 84.

    Rosenblatt, M. Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27, 832–837 (1956).

    MathSciNet  MATH  Google Scholar 

  • 85.

    Parzen, E. On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962).

    MathSciNet  MATH  Google Scholar 

  • 86.

    Bronk Ramsey, C. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 1809–1833 (2017).

    Google Scholar 

  • 87.

    Silverman, B. W. Density Estimation for Statistics and Data Analysis (Chapman & Hall, 1986).

  • 88.

    Bronk Ramsey, C. OxCal 4.3 Manual. https://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.html (2020).

  • 89.

    Stafford, T. W. Jr, Duhamel, R. C., Haynes, C. V. Jr & Brendel, K. Isolation of proline and hydroxyproline from fossil bone. Life Sci. 31, 931–938 (1982).

    CAS  PubMed  Google Scholar 

  • 90.

    Stafford, T. W., Brendel, K. & Duhamel, R. C. Radiocarbon, 13C and 15N analysis of fossil bone: removal of humates with XAD-2 resin. Geochim. Cosmochim. Acta 52, 2257–2267 (1988).

    ADS  CAS  Google Scholar 

  • 91.

    Deviese, T., Comeskey, D., McCullagh, J., Bronk Ramsey, C. & Higham, T. New protocol for compound-specific radiocarbon analysis of archaeological bones. Rapid Commun. Mass Spectrom. 32, 373–379 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 92.

    Devièse, T. et al. Increasing accuracy for the radiocarbon dating of sites occupied by the first Americans. Quat. Sci. Res. 198, 171–180 (2018).

    ADS  Google Scholar 

  • 93.

    Becerra-Valdivia, L. et al. Reassessing the chronology of the archaeological site of Anzick. Proc. Natl Acad. Sci. USA 115, 7000–7003 (2018).

    CAS  PubMed  Google Scholar 

  • 94.

    Waters, M. R., Stafford, T. W. Jr, Kooyman, B. & Hills, L. V. Late Pleistocene horse and camel hunting at the southern margin of the ice-free corridor: reassessing the age of Wally’s Beach, Canada. Proc. Natl Acad. Sci. USA 112, 4263–4267 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 95.

    Bronk Ramsey, C., Housley, R. A., Lane, C. S., Smith, V. C. & Pollard, A. M. The RESET tephra database and associated analytical tools. Quat. Sci. Rev. 118, 33–47 (2015).

    ADS  Google Scholar 

  • 96.

    Derek Hamilton, W. & Krus, A. M. The myths and realities of Bayesian chronological modeling revealed. Am. Antiq. 83, 187–203 (2018).

    Google Scholar 


  • Source: Ecology - nature.com

    Publisher Correction: Impacts of hydrothermal plume processes on oceanic metal cycles and transport

    Covid-19 shutdown led to increased solar power output