in

Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats

  • 1.

    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Analysis (Oxford University Press, Oxford, 2009).

    Google Scholar 

  • 2.

    Giménez Gómez, V. C., Verdú, J. R., Guerra Alonso, C. B. & Zurita, G. A. Relationship between land uses and diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina: which are the key factors?. Biodivers. Conserv.27, 3201–3213 (2018).

    Google Scholar 

  • 3.

    Nichols, E. et al. Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol. Conserv.137, 1–19 (2007).

    Google Scholar 

  • 4.

    Barragán, F., Moreno, C. E., Escobar, F., Halffter, G. & Navarrete, D. Negative impacts of human land use on dung beetle functional diversity. PLoS ONE6, e17976. https://doi.org/10.1371/journal.pone.0017976 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Giménez Gómez, V. C., Verdú, J. R., Gómez-Cifuentes, A., Vaz-de-Mello, F. Z. & Zurita, G. A. Influence of land use on the trophic niche overlap of dung beetles in the semideciduous Atlantic forest of Argentina. Insect Conserv. Divers.11, 554–564 (2018).

    Google Scholar 

  • 6.

    Gómez-Cifuentes, A., Munevar, A., Gimenez, V. C., Gatti, M. G. & Zurita, G. A. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina. J. Insect Conserv.21, 147–156 (2017).

    Google Scholar 

  • 7.

    Gómez-Cifuentes, A., Giménez Gómez, V. C., Moreno, C. & Zurita, G. A. Tree retention in cattle ranching systems partially preserves dung beetle diversity and functional groups in the semideciduous Atlantic forest. Basic Appl. Ecol.34, 64–74 (2019).

    Google Scholar 

  • 8.

    Halffter, G. & Arellano, L. Response of dung beetle diversity to human-induced changes in a tropical landscape. Biotropica34, 144–154 (2002).

    Google Scholar 

  • 9.

    Gardner, T. A., Hernández, M. I. M., Barlow, J. & Peres, C. A. Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles. J. Appl. Ecol45, 883–893 (2008).

    Google Scholar 

  • 10.

    Nichols, E. et al. Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology94, 180–189 (2013).

    PubMed  Google Scholar 

  • 11.

    Sowig, P. Habitat selection and offspring survival rate in three paracoprid dung beetles: the influence of soil type and soil moisture. Ecography18, 147–154 (1995).

    Google Scholar 

  • 12.

    Davis, A. L. V., Van Aarde, R. J., Scholtz, C. H. & Delport, J. H. Increasing representation of localized dung beetles across a chronosequence of regenerating vegetation and natural dune forest in South Africa. Glob. Ecol. Biogeogr.11, 191–209 (2002).

    Google Scholar 

  • 13.

    Almeida, S., Louzada, J., Sperber, C. & Barlow, J. Subtle land use change and tropical biodiversity: dung beetle communities in Cerrado grasslands and exotic pastures. Biotropica43, 704–710 (2011).

    Google Scholar 

  • 14.

    Piccini, I. et al. Dung beetles as drivers of ecosystem multifunctionality: are response and effect traits interwoven?. Sci. Total Environ.616–617, 1440–1448 (2018).

    ADS  PubMed  Google Scholar 

  • 15.

    Di Bitetti, M. S., Placci, G. & Dietz, L. A. A Biodiversity Vision for the Upper Paraná Atlantic Forest Ecoregion: Designing a Biodiversity Conservation Landscape and Setting Priorities for Conservation Action (World Wild life Fund, Gland, 2003).

    Google Scholar 

  • 16.

    Ribeiro, M. C., Metzger, J. P., Camargo Martensen, A., Ponzoni, F. J. & Hirota, M. M. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv.142, 1141–1153 (2009).

    Google Scholar 

  • 17.

    Salomão, R. P. & Lannuzzi, L. Dung beetle (Coleoptera, Scarabaeidae) assemblage of a highly fragmented landscape of Atlantic forest: from small to the largest fragments of northeastern Brazilian region. Rev. Bras. Entomol.59, 126–131 (2015).

    Google Scholar 

  • 18.

    Bartholomew, G. A. & Heinrich, B. Endothermy in African dung beetles during flight, ball making, and ball rolling. J. Exp. Biol.73, 65–83 (1978).

    Google Scholar 

  • 19.

    Verdú, J. R., Arellano, L., Numa, C. & Micó, E. Roles of endothermy in niche differentiation for ball-rolling dung beetles (Coleoptera: Scarabaeidae) along an altitudinal gradient. Ecol. Entomol.32, 544–551 (2007).

    Google Scholar 

  • 20.

    Caveney, S., Scholtz, C. H. & McIntyre, P. Patterns of daily flight activity in onitine dung beetles (Scarabaeinae: Onitini). Oecologia103, 444–452 (1995).

    ADS  PubMed  Google Scholar 

  • 21.

    Verdú, J. R., Díaz, A. & Galante, E. Thermoregulatory strategies in two closery related sympatric Scarabaeus species (Coleoptera: Scarabaeinae). Physiol. Entomol.29, 32–38 (2004).

    Google Scholar 

  • 22.

    Kingsolver, J. G. The well-temperatured biologist. Am. Nat.174, 755–768 (2009).

    PubMed  Google Scholar 

  • 23.

    Reis, M. et al. A comparative study of the short term cold resistance response in distantly related Drosophila species: the role of regucalcin and frost. PLoS ONE6, e25520. https://doi.org/10.1371/journal.pone.0025520 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Harrison, J. F., Woods, H. A. & Roberts, S. P. Ecological and Environmental Physiology of Insects (Oxford University Press, Oxford, 2012).

    Google Scholar 

  • 25.

    Chown, S. L., Scholtz, C. H., Klok, C. J., Jourbet, F. J. & Coles, K. S. Ecophysiology, range contraction and survival of a geographically restricted African dung beetle (Coleoptera: Scarabaeidae). Funct. Ecol.9, 30–39 (1995).

    Google Scholar 

  • 26.

    Heath, J. E., Hanegan, J. L., Wilkin, P. J. & Heath, M. S. Adaptation to the thermal responses of insects. Integr. Comp. Biol.11, 147–158 (1971).

    Google Scholar 

  • 27.

    Kristensen, T. N., Loeschcke, V. & Hoffmann, A. A. Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proc. R. Soc. Lond. B Biol. Sci.274, 771–778 (2007).

    Google Scholar 

  • 28.

    Verdú, J. R. & Lobo, J. M. Ecophysiology of thermorregulation in endothermic dung beetles: ecological and geographical implication. In Insect Ecology and Conservation (ed. Fattorini, S.) 1–28 (Research Singnpost, Trivandrum, 2008).

    Google Scholar 

  • 29.

    Krogh, A. & Zeuthen, E. The mechanism of flight preparation in some insects. J. Exp. Biol.18, 1–10 (1941).

    Google Scholar 

  • 30.

    Heinrich, B. Thermoregulation of African and European honeybees during foraging, attack, and hive exits and returns. J. Exp. Biol.80, 217–229 (1979).

    Google Scholar 

  • 31.

    Verdú, J. R., Alba-Tercedor, J. & Jiménez-Manrique, M. Evidence of different thermoregulatory mechanisms between two sympatric Scarabaeus species using infrared thermography and microcomputer tomography. PLoS ONE7, e33914. https://doi.org/10.1371/journal.pone.0033914 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Chown, S. L. & Terblanche, J. S. Physiological diversity in insects: ecological and evolutionary contexts. Adv. Insect. Physiol.33, 50–152 (2006).

    Google Scholar 

  • 33.

    Terblanche, J. S., Deere, J. A., Clusells-Trullas, S., Janion, C. & Chown, S. L. Critical thermal limits depend on methodological context. Proc. R. Soc. Lond. B Biol. Sci.274, 2935–2942 (2007).

    Google Scholar 

  • 34.

    Vorhees, A. S., Gray, E. M. & Bradley, T. J. Thermal resistance and performance correlate with climate in populations of a widespread mosquito. Physiol. Biochem. Zool.86, 73–81 (2013).

    PubMed  Google Scholar 

  • 35.

    Gates, D. M. Biophysical Ecology (Springer, Berlin, 1980).

    Google Scholar 

  • 36.

    Bartholomew, G. A. & Casey, T. M. Endothermy during terrestrial activity in large beetles. Science195, 882–883 (1977).

    ADS  CAS  PubMed  Google Scholar 

  • 37.

    Verdú, J. R., Arellano, L. & Numa, C. Thermoregulation in endotermic dung beetles (Coleoptera: Scarabaeidae): effect of body size and ecophysiological constraints in flight. J. Insect Physiol.52, 854–860 (2006).

    PubMed  Google Scholar 

  • 38.

    Chown, S. L. & Klok, C. J. The ecological implications of physiological diversity in dung beetles. In Ecology and Evolution of Dung Beetles (eds Simmons, L. W. & Ridsdill-Smith, T. J.) 200–219 (Blackweel Publishing Ltd, Hoboken, 2011).

    Google Scholar 

  • 39.

    Oliveira-Filho, A. T. & Fontes, I. A. M. Patterns of floristic differentiation among Atlantic forests in Southeastern Brazil and the influence of climate. Biotropica32, 793–810 (2000).

    Google Scholar 

  • 40.

    Izquierdo, A. E., De Angelo, C. D. & Aide, T. M. Thirty years of human demography and land use change in the Atlantic Forest of Misiones, Argentina: an evaluation of the forest transition model. Ecol. Soc.13, 3 (2008).

    Google Scholar 

  • 41.

    Zurita, G. A. & Bellocq, M. I. Bird assemblages in anthropogenic habitats: identifying a suitability gradient for native species in the Atlantic forest. Biotropica44, 412 (2012).

    Google Scholar 

  • 42.

    Cabrera, A. L. Fitogeografía de Argentina. Boletín de sociedad Argentina de Botánica14, 1–42 (1971).

    Google Scholar 

  • 43.

    Campanello, P. I., Montti, L., Goldstein, G. & Mac Donagh, P. Reduced impact logging and post-harvesting forest management in the Atlantic Forest: alternative approaches to enhance canopy tree growth and regeneration and to reduce the impact of invasive species. In Forest Management (ed. Grossberg, S. P.) 39–59 (Nova Science, New York, 2009).

    Google Scholar 

  • 44.

    Dufrene, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr.67, 345–366 (1997).

    Google Scholar 

  • 45.

    McGeoch, M. A. & Chown, S. L. Scaling up the value of bioindicators. Trends Ecol. Evol.13, 46–47 (1998).

    CAS  PubMed  Google Scholar 

  • 46.

    McGeoch, M. A., van Rensburg, B. J. & Botes, A. The verification and application of bioindicators: a case of study of dung beetles in a savanna ecosystem. J. Appl. Ecol.39, 661–672 (2002).

    Google Scholar 

  • 47.

    McCune, B. & Mefford, M. J. Multivariate Analysis of Ecological Data, Version 4.0. MjM Software, Gleneden Beach, Oregon, U.S.A. (1999).

  • 48.

    Hernández, M. I. M. The night and day of dung beetles (Coleoptera, Scarabaeidae) in the Serra do Japi, Brazil: elytra colour related to daily activity. Rev. Bras. Entomol.46, 597–600 (2002).

    Google Scholar 

  • 49.

    Hernández, M. I. M., Monteiro, L. R. & Favila, M. E. The role of body size and shape in understanding competitive interactions within a community of neotropical dung beetles. J. Insect Sci.11, 1–14 (2011).

    Google Scholar 

  • 50.

    Heinrich, B. Hot-blooded Insects: Strategies and Mechanisms of Thermoregulation (Harvard University Press, Cambridge, 1993).

    Google Scholar 

  • 51.

    Vannier, G. The thermobiological limits of some freezing intolerant insects: the supercooling and thermostupor points. Acta Oecol.15, 31–41 (1994).

    Google Scholar 

  • 52.

    Chown, S. L. & Nicolson, S. W. Insect Physiological Ecology: Mechanisms and Patterns (Oxford University Press, Oxford, 2004).

    Google Scholar 

  • 53.

    Gallego, B., Verdú, J. R., Carrascal, L. M. & Lobo, J. M. A protocol for analyzing thermal stress in insects using infrared thermography. J. Therm. Biol.56, 113–121 (2016).

    PubMed  Google Scholar 

  • 54.

    Merrick, M. Temperature regulation in burying beetles (Nicrophorus spp.: Coleoptera: Silphidae): effects of body size, morphology and environmental temperature. J. Exp. Biol.207, 723–733 (2004).

    PubMed  Google Scholar 

  • 55.

    Tyndale-Biscoe, M. Age-grading methods in adult insects: a review. Bull. Entomol. Res.74, 341–377 (1984).

    Google Scholar 

  • 56.

    Verdú, J. R., Casa, J. L., Lobo, J. M. & Numa, C. Dung beetles eat acorns to increase their ovarian development and thermal tolerance. PLoS ONE5, e10114. https://doi.org/10.1371/journal.pone.0010114 (2010).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    StatsDirect Ltd StatsDirect Statistical Software, StatsDirect, U.K.

  • 58.

    May, M. L. Thermoregulation and adaptation to temperature in dragonflies (Odonata: Anisoptera). Ecol. Monogr.46, 1–32 (1976).

    Google Scholar 

  • 59.

    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression, Second Edition. Thousand Oaks CA: Sage. https://socserv.socsci.mcmaster.ca/jfox/Books/Companion (2011).

  • 60.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw.67, 1–48 (2015).

    Google Scholar 

  • 61.

    Length, R. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.2.3. https://CRAN.R-project.org/package=emmeans (2018).

  • 62.

    Dinno, A. Conover.test: conover-iman test of multiple comparisons using rank sums. R package version 1.1.4. https://CRAN.R-project.org/package=conover.test (2017).

  • 63.

    Di Rienzo, J. A. et al. W. InfoStat version 3241 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina (2016).

  • 64.

    Moran, D. M. Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos100, 403–405 (2013).

    Google Scholar 

  • 65.

    Campos, R. C. & Hernández, M. I. M. The importance of maize management on dung beetle communities in Atlantic forest fragment. PLoS ONE10, e0145000. https://doi.org/10.1371/journal.pone.0145000 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 66.

    Filgueiras, B. K. C., Tabarelli, M., Leal, I., Vaz-De-Mello, F. Z. & Iannuzzi, L. Dung beetle persistence in human-modified landscapes: combining indicator species with anthropogenic land uses and fragmentation- related effects. Ecol. Indic.55, 65–73 (2015).

    Google Scholar 

  • 67.

    Tavares, A. et al. Eucalyptus plantations as hybrid ecosystems: implications for species conservation in the Brazilian Atlantic forest. For. Ecol. Manag.433, 131–139 (2019).

    Google Scholar 

  • 68.

    Smolka, J. et al. Dung beetles use their dung ball as a mobile thermal refuge. Curr. Biol.22, 863–864 (2012).

    Google Scholar 

  • 69.

    Verdú, J. R., Cortez, V., Oliva, D. & Giménez-Gómez, V. Thermoregulatory syndromes of two sympatric dung beetles with low energy costs. J. Insect Physiol.118, 103945. https://doi.org/10.1016/j.jinsphys.2019.103945 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 70.

    Heinrich, B. & Bartholomew, G. A. Roles of endothermy and size in inter- and intraspecific competition for elephant dung in an African dung beetle, Scarabaeus laevistriatus. Physiol. Zool.52, 484–496 (1979).

    Google Scholar 

  • 71.

    Da Silva, P. G. & Hernández, M. I. M. Spatial variation of dung beetle assemblages associated with forest structure in remnants of southern Brazilian Atlantic Forest. Rev. Bras. Entomol.60, 73–81 (2016).

    Google Scholar 

  • 72.

    May, M. L. Insect thermoregulation. Annu. Rev. Entomol.24, 313–349 (1979).

    Google Scholar 

  • 73.

    Young, O. P. Perching of neotropical dung beetles on leaf surfaces: an example of behavioral thermoregulation?. Biotropica16, 324–327 (1984).

    Google Scholar 

  • 74.

    Heinrich, B. Insect thermoregulation. Endeavour19, 28–33 (1995).

    Google Scholar 

  • 75.

    Edney, E. B. Body temperatures of tenebrionid beetles in the Namib Desert of Southern Africa. J. Exp. Biol.55, 253–272 (1971).

    Google Scholar 

  • 76.

    Casey, T. M. Thermoregulation and heat exchange. Adv. Insect Physiol.20, 119–146 (1988).

    Google Scholar 

  • 77.

    Halffter, G. & Matthews, E. G. The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae). Soc. Mex. Entomol.14, 1–312 (1966).

    Google Scholar 

  • 78.

    Audino, L. D., Louzada, J. & Comita, L. Dung beetles as indicators of tropical forest restoration success: is it possible to recover species and functional diversity?. Biol. Conserv.169, 248–257 (2014).

    Google Scholar 

  • 79.

    Beiroz, W. et al. Spatial and temporal shifts in functional and taxonomic diversity of dung beetles in a human-modified tropical forest landscape. Ecol. Indic.95, 518–526 (2018).

    Google Scholar 

  • 80.

    Gómez-Cifuentes, A., Vespa, N., Semmanrtín, M. & Zurita, G. A. Canopy cover is a key factor to preserve the ecological functions of dung beetles in the southern Atlantic Forest. Appl. Soil Ecol.154, 103652. https://doi.org/10.1016/j.apsoil.2020.103652 (2020).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    When the chemical industry met modern architecture

    MIT Energy Conference goes virtual