in

Thresholds for ecological responses to global change do not emerge from empirical data

  • 1.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS  PubMed  Google Scholar 

  • 2.

    Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).

  • 3.

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    PubMed  Google Scholar 

  • 4.

    Folke, C. et al. Regime shifts, resilience and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).

    Google Scholar 

  • 5.

    Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).

    PubMed  Google Scholar 

  • 6.

    Aichi Biodiversity Targets (UN, 2010); https://www.cbd.int/sp/targets/

  • 7.

    Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 308–315 (2006).

    Google Scholar 

  • 8.

    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    CAS  PubMed  Google Scholar 

  • 9.

    Hartigan, J. A. & Hartigan, P. M. The dip test of unimodality. Ann. Stat. 13, 70–84 (1985).

    Google Scholar 

  • 10.

    Montoya, J. M., Donohue, I. & Pimm, S. L. Planetary boundaries for biodiversity: implausible science, pernicious policies. Trends Ecol. Evol. 33, 71–73 (2018).

    PubMed  Google Scholar 

  • 11.

    Pimm, S. L., Donohue, I., Montoya, J. M. & Loreau, M. Measuring resilience is essential to understand it. Nat. Sustain. 2, 895–897 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Clark, C. M. & Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451, 712–715 (2008).

    CAS  PubMed  Google Scholar 

  • 13.

    Korell, L., Auge, H., Chase, J. M., Harpole, W. S. & Knight, T. M. We need more realistic climate change experiments for understanding ecosystems of the future. Glob. Change Biol. 26, 325–327 (2020).

    Google Scholar 

  • 14.

    Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).

    PubMed  Google Scholar 

  • 15.

    Connell, S. D. & Ghedini, G. Resisting regime-shifts: the stabilising effect of compensatory processes. Trends Ecol. Evol. 30, 513–515 (2015).

    PubMed  Google Scholar 

  • 16.

    Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. W. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90, 1478–1484 (2009).

    PubMed  Google Scholar 

  • 17.

    Diaz-Pulido, G. et al. Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PLoS ONE 4, e5239 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 18.

    Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).

    CAS  PubMed  Google Scholar 

  • 19.

    Suding, K. N. & Hobbs, R. J. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24, 271–279 (2009).

    PubMed  Google Scholar 

  • 20.

    Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008).

    CAS  PubMed  Google Scholar 

  • 21.

    Groffman, P. M. et al. Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9, 1–13 (2006).

    Google Scholar 

  • 22.

    Hughes, T. P., Carpenter, S., Rockstrom, J., Scheffer, M. & Walker, B. Multiscale regime shifts and planetary boundaries. Trends Ecol. Evol. 28, 389–395 (2013).

    PubMed  Google Scholar 

  • 23.

    Papworth, S. K., Rist, J., Coad, L. & Milner-Gulland, E. J. Evidence for shifting baseline syndrome in conservation. Conserv. Lett. 2, 93–100 (2009).

    Google Scholar 

  • 24.

    Schlesinger, W. H. Planetary boundaries: thresholds risk prolonged degradation. Nat. Clim. Change 1, 112–113 (2009).

  • 25.

    Duarte, C. M. et al. Reconsidering ocean calamities. BioScience 65, 130–139 (2015).

    Google Scholar 

  • 26.

    Chase, J. M. & Knight, T. M. Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecol. Lett. 16, 17–26 (2013).

    PubMed  Google Scholar 

  • 27.

    Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992 (2006).

    CAS  PubMed  Google Scholar 

  • 28.

    Gruner, D. S. et al. A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecol. Lett. 11, 740–755 (2008).

    PubMed  Google Scholar 

  • 29.

    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).

    PubMed  Google Scholar 

  • 30.

    Lin, D., Xia, J. & Wan, S. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytol. 188, 187–198 (2010).

    PubMed  Google Scholar 

  • 31.

    Treseder, K. K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol. Lett. 11, 1111–1120 (2008).

    PubMed  Google Scholar 

  • 32.

    Akiyama, H., Yan, X. & Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Glob. Change Biol. 16, 1837–1846 (2010).

    Google Scholar 

  • 33.

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    CAS  PubMed  Google Scholar 

  • 34.

    Liang, J. Y., Qi, X., Souza, L. & Luo, Y. Q. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis. Biogeosciences 13, 2689–2699 (2016).

    CAS  Google Scholar 

  • 35.

    Liu, L. L. et al. A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes. Glob. Change Biol. 22, 1394–1405 (2016).

    Google Scholar 

  • 36.

    van Lent, J., Hergoualc’h, K. & Verchot, L. V. Reviews and syntheses: soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: a meta-analysis. Biogeosciences 12, 7299–7313 (2015).

    Google Scholar 

  • 37.

    Ateweberhan, M. & McClanahan, T. R. Relationship between historical sea-surface temperature variability and climate change-induced coral mortality in the western Indian Ocean. Mar. Pollut. Bull. 60, 964–970 (2010).

    CAS  PubMed  Google Scholar 

  • 38.

    Gärtner, M. et al. Invasive plants as drivers of regime shifts: identifying high-priority invaders that alter feedback relationships. Divers. Distrib. 20, 733–744 (2014).

    Google Scholar 

  • 39.

    Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109, 49–61 (2012).

    Google Scholar 

  • 40.

    Dijkstra, F. A. & Adams, M. A. Fire eases imbalances of nitrogen and phosphorus in woody plants. Ecosystems 18, 769–779 (2015).

    CAS  Google Scholar 

  • 41.

    Lu, M. et al. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology 94, 726–738 (2013).

    PubMed  Google Scholar 

  • 42.

    Griffin, J. N., Byrnes, J. E. K. & Cardinale, B. J. Effects of predator richness on prey suppression: a meta-analysis. Ecology 94, 2180–2187 (2013).

    PubMed  Google Scholar 

  • 43.

    Srivastava, D. S. et al. Diversity has stronger top-down than bottom-up effects on decomposition. Ecology 90, 1073–1083 (2009).

    PubMed  Google Scholar 

  • 44.

    Östman, Ö. et al. Top-down control as important as nutrient enrichment for eutrophication effects in North Atlantic coastal ecosystems. J. Appl. Ecol. 53, 1138–1147 (2016).

    Google Scholar 

  • 45.

    Katano, I., Doi, H., Eriksson, B. K. & Hillebrand, H. A cross-system meta-analysis reveals coupled predation effects on prey biomass and diversity. Oikos 124, 1427–1435 (2015).

    Google Scholar 

  • 46.

    Borer, E. T. et al. What determines the strength of a trophic cascade? Ecology 86, 528–537 (2005).

    Google Scholar 

  • 47.

    Hodapp, D. & Hillebrand, H. Effect of consumer loss on resource removal depends on species-specific traits. Ecosphere 8, e01742 (2017).

    Google Scholar 

  • 48.

    Liu, L. L. & Greaver, T. L. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol. Lett. 13, 819–828 (2010).

    PubMed  Google Scholar 

  • 49.

    Martinson, H. M. & Fagan, W. F. Trophic disruption: a meta-analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems. Ecol. Lett. 17, 1178–1189 (2014).

    PubMed  Google Scholar 

  • 50.

    Holden, S. & Treseder, K. A meta-analysis of soil microbial biomass responses to forest disturbances. Front. Microbiol. 4, 163 (2013).

  • 51.

    Nagelkerken, I. & Connell, S. D. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc. Natl Acad. Sci. USA 112, 13272–13277 (2015).

    CAS  PubMed  Google Scholar 

  • 52.

    Kaiser, M. J. et al. Global analysis of response and recovery of benthic biota to fishing. Mar. Ecol. Prog. Ser. 311, 1–14 (2006).

    Google Scholar 

  • 53.

    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 534, 665–669 (2017).

    Google Scholar 

  • 54.

    Gallardo, B., Clavero, M., Sánchez, M. I. & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 22, 151–163 (2016).

    Google Scholar 

  • 55.

    Vila, M. et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).

    PubMed  Google Scholar 

  • 56.

    Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).

    Google Scholar 

  • 57.

    Andersen, T., Carstensen, J., Hernandez-Garcia, E. & Duarte, C. M. Ecological thresholds and regime shifts: approaches to identification. Trends Ecol. Evol. 24, 49–57 (2009).

    PubMed  Google Scholar 

  • 58.

    Fasiolo, M., Goude, Y., Nedellec, R. & Wood, S. N. Fast calibrated additive quantile regression. J. Am. Stat. Assoc. https://doi.org/10.1080/01621459.2020. 1725521 (2020).

  • 59.

    Sheather, S. J. & Jones, M. C. A reliable data-based bandwidth selection method for kernel density estimation. J. Royal Stat. Soc. B 53, 683–690 (1991).

    Google Scholar 


  • Source: Ecology - nature.com

    Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens

    Biodiversity scientists must fight the creeping rise of extinction denial