in

Uncovering diversity and metabolic spectrum of animals in dead zone sediments

  • 1.

    Michael Beman, J., Arrigo, K. R. & Matson, P. A. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434, 211–214 (2005).

  • 2.

    Doney, S. C. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328, 1512–1516 (2010).

  • 3.

    Carstensen, J., Andersen, J. H., Gustafsson, B. G. & Conley, D. J. Deoxygenation of the Baltic Sea during the last century. Proc. Natl Acad. Sci. USA 111, 5628–5633 (2014).

  • 4.

    Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2, 199–229 (2010).

    • Article
    • Google Scholar
  • 5.

    Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335 (2017).

  • 6.

    Levin, L. A. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr. Mar. Biol. 41, 1–45 (2003).

    • Google Scholar
  • 7.

    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

  • 8.

    Gyllstrom, M. & Hansson, L. A. Dormancy in freshwater zooplankton: Induction, termination and the importance of benthic-pelagic coupling. Aquat. Sci. 66, 274–295 (2004).

    • Article
    • Google Scholar
  • 9.

    Roman M. R., Brandt S. B., Houde E. D., Pierson J. J. Interactive effects of hypoxia and temperature on coastal pelagic zooplankton and fish. Front. Mar. Sci. 6, 1–18 (2019).

  • 10.

    Broman E., Brüsin M., Dopson M., Hylander S. Oxygenation of anoxic sediments triggers hatching of zooplankton eggs. Proc. R. Soc. Lond. B Biol. Sci. 282, 1–7 (2015).

  • 11.

    Cook, A. A. et al. Nematode abundance at the oxygen minimum zone in the Arabian Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 47, 75–85 (2000).

    • Article
    • Google Scholar
  • 12.

    Giere O. Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments, 2nd edn. (Springer-Verlag, 2009).

  • 13.

    Zeppilli, D. et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar. Biodivers. 48, 35–71 (2018).

    • Article
    • Google Scholar
  • 14.

    Zeppilli, D. et al. Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar. Biodivers. 45, 505–535 (2015).

    • Article
    • Google Scholar
  • 15.

    Moens T., et al. Ecology of free-living marine nematodes. Handbook of Zoology (ed. Schmidt-Rhaesa, A.) (De Gruyter, Berlin, 2013).

  • 16.

    Fenchel T. Anaerobic eukaryotes. in: Anoxia: Evidence for Eukaryote Survival and Paleontological Strategies (eds Altenbach, A.V. Bernhard, J.M. Seckbach, J.) (Springer Netherlands, 2012).

  • 17.

    Sperling, E. A. et al. Oxygen, ecology, and the Cambrian radiation of animals. Proc. Natl Acad. Sci. USA 110, 13446–13451 (2013).

    • Article
    • Google Scholar
  • 18.

    Canfield, D. E. et al. A cryptic sulfur cycle in oxygen-minimum–zone waters off the Chilean coast. Science 330, 1375 (2010).

  • 19.

    Wright, J. J., Konwar, K. M. & Hallam, S. J. Microbial ecology of expanding oxygen minimum zones. Nat. Rev. Microbiol. 10, 381–394 (2012).

  • 20.

    Diaz, R. J. & Rosenberg, R. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Annu. Rev. 33, 245–203 (1995).

    • Google Scholar
  • 21.

    Vaquer-Sunyer, R. & Duarte, C. M. Sulfide exposure accelerates hypoxia‐driven mortalit. Limnol. Oceanogr. 55, 1075–1082 (2010).

  • 22.

    Fenchel, T. & Finlay, B. J. Ecology and Evolution in Anoxic Worlds. (Oxford University Press, Oxford; New York, 1995).

    • Google Scholar
  • 23.

    Thiermann, F., Vismann, B. & Giere, O. Sulphide tolerance of the marine nematode Oncholaimus campylocercoides—a result of internal sulphur formation? Mar. Ecol. Prog. Ser. 193, 251–259 (2000).

  • 24.

    Polz, M. F., Felbeck, H., Novak, R., Nebelsick, M. & Ott, J. A. Chemoautotrophic, sulfur-oxidizing symbiotic bacteria on marine nematodes: Morphological and biochemical characterization. Micro. Ecol. 24, 313–329 (1992).

  • 25.

    Han Y., Perner M. The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Front. Microbiol. 6, 1–17 (2015).

  • 26.

    Burdige D. J. Geochemistry of Marine Sediments. (PRINCETON University Press, 2006).

  • 27.

    Bonaglia, S. et al. Denitrification and DNRA at the Baltic Sea oxic–anoxic interface: substrate spectrum and kinetics. Limnol. Oceanogr. 61, 1900–1915 (2016).

  • 28.

    Kwast, K. E., Burke, P. V., Staahl, B. T. & Poyton, R. O. Oxygen sensing in yeast: evidence for the involvement of the respiratory chain in regulating the transcription of a subset of hypoxic genes. Proc. Natl Acad. Sci. USA 96, 5446–5451 (1999).

  • 29.

    Cristescu M. E. Can environmental RNA revolutionize biodiversity science? Trends Ecol. Evol. 694–697 (2019).

  • 30.

    Marzocchi, U. et al. Transient bottom water oxygenation creates a niche for cable bacteria in long-term anoxic sediments of the Eastern Gotland Basin. Environ. Microbiol. 20, 3031–3041 (2018).

  • 31.

    Altenbach A., Bernhard J. M., Seckbach J. Anoxia: Evidence for Eukaryote Survival and Paleontological Strategies. (Springer Science & Business Media, 2011).

  • 32.

    Wetzel, M. A., Fleeger, J. W. & Powers, S. P. Effects of hypoxia and anoxia on meiofauna: a review with new data from the Gulf of Mexico. Coast. Hypoxia 58, 165 (2001).

    • Google Scholar
  • 33.

    Rabalais, N. N., Turner, R. E. & Wiseman, W. J. Jr Gulf of Mexico hypoxia, aka “The dead zone”. Annu. Rev. Ecol. Syst. 33, 235–263 (2002).

    • Article
    • Google Scholar
  • 34.

    Sergeeva, N. G., Mazlumyan, S. A., Lichtschlag, A. & Holtappels, M. Benthic Protozoa and Metazoa living in deep anoxic and hydrogen sulfide conditions of the Black Sea: Direct observations of actively moving Ciliophora and Nematoda. International Journal of Marine Science 4, 1–11 (2014).

  • 35.

    Sergeeva, N. G., Gooday, A. J., Mazlumyan, S. A., Kolesnikova, E. A., Lichtschlag, A., Kosheleva, T. N., & Anikeeva, O. V. Anoxia (Editors: Alexander V. Altenbach, Joan M. Bernhard, Joseph Seckbach) Meiobenthos of the oxic/anoxic interface in the Southwestern region of the Black Sea: abundance and taxonomic composition (Springer, Dordrecht, 2012).

  • 36.

    Hentschel, U., Berger, E. C., Bright, M., Felbeck, H. & Ott, J. A. Metabolism of nitrogen and sulfur in ectosymbiotic bacteria of marine nematodes (Nematoda, Stilbonematinae). Mar. Ecol. Prog. Ser. 183, 149–158 (1999).

  • 37.

    Taheri, M., Braeckman, U., Vincx, M. & Vanaverbeke, J. Effect of short-term hypoxia on marine nematode community structure and vertical distribution pattern in three different sediment types of the North Sea. Mar. Environ. Res. 99, 149–159 (2014).

  • 38.

    Steyaert, M. et al. Responses of intertidal nematodes to short-term anoxic events. J. Exp. Mar. Biol. Ecol. 345, 175–184 (2007).

  • 39.

    Taheri, M., Grego, M., Riedel, B., Vincx, M. & Vanaverbeke, J. Patterns in nematode community during and after experimentally induced anoxia in the northern Adriatic Sea. Mar. Environ. Res. 110, 110–123 (2015).

  • 40.

    Tahseen, Q. Nematodes in aquatic environments: adaptations and survival strategies. Biodivers. J. 3, 13–40 (2012).

    • Google Scholar
  • 41.

    Shih, J., Platzer, E., Thompson, S. & Carroll, E. Jr. Characterization of key glycolytic and oxidative enzymes in Steinernema carpocapsae. J. Nematol. 28, 431 (1996).

  • 42.

    Pilz, M., Hohberg, K., Pfanz, H., Wittmann, C. & Xylander, W. E. R. Respiratory adaptations to a combination of oxygen deprivation and extreme carbon dioxide concentration in nematodes. Respir. Physiol. Neurobiol. 239, 34–40 (2017).

  • 43.

    Tchesunov, A. V., Portnova, D. A. & van Campenhout, J. Description of two free-living nematode species of Halomonhystera disjuncta complex (Nematoda: Monhysterida) from two peculiar habitats in the sea. Helgol. Mar. Res. 69, 57–85 (2015).

    • Article
    • Google Scholar
  • 44.

    Ott, J. et al. Tackling the sulfide gradient: a novel strategy involving marine nematodes and chemoautotrophic ectosymbionts. Mar. Ecol. 12, 261–279 (1991).

    • Article
    • Google Scholar
  • 45.

    Chandel, N. S., Budinger, G. R., Choe, S. H. & Schumacker, P. T. Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes. J. Biol. Chem. 272, 18808–18816 (1997).

  • 46.

    Castello, P. R., David, P. S., McClure, T., Crook, Z. & Poyton, R. O. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: Implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab. 3, 277–287 (2006).

  • 47.

    Radzikowski, J. Resistance of dormant stages of planktonic invertebrates to adverse environmental conditions. J. Plankton Res. 35, 707–723 (2013).

    • Article
    • Google Scholar
  • 48.

    Denekamp, N. Y. et al. Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genom. 10, 108–108 (2009).

  • 49.

    Kizito, Y. S. & Nauwerck, A. Temporal and vertical distribution of planktonic rotifers in a meromictic crater lake, Lake Nyahirya (Western Uganda). Hydrobiologia 313, 303–312 (1995).

    • Article
    • Google Scholar
  • 50.

    Esparcia A., Miracle M. R., Serra M. Brachionus plicatilis tolerance to low oxygen concentrations. in: Rotifer Symposium V (eds Ricci C, Snell TW, King CE). (Springer Netherlands, 1989).

  • 51.

    Ozaki, Y., Kaneko, G., Yanagawa, Y. & Watabe, S. Calorie restriction in the rotifer Brachionus plicatilis enhances hypoxia tolerance in association with the increased mRNA levels of glycolytic enzymes. Hydrobiologia 649, 267–277 (2010).

  • 52.

    Snell, T. W., Johnston, R. K. & Jones, B. L. Hypoxia extends lifespan of Brachionus manjavacas (Rotifera). Limnetica 38, 159–166 (2019).

    • Google Scholar
  • 53.

    Wiegand, G. & Remington, S. J. Citrate synthase: structure, control, and mechanism. Annu. Rev. Biophys. Biophys. Chem. 15, 97–117 (1986).

  • 54.

    Wetzel, M., Weber, A. & Giere, O. Re-colonization of anoxic/sulfidic sediments by marine nematodes after experimental removal of macroalgal cover. Mar. Biol. 141, 679–689 (2002).

  • 55.

    Dalsgaard, T., De Brabandere, L. & Hall, P. O. J. Denitrification in the water column of the central Baltic Sea. Geochim. Cosmochim. Acta 106, 247–260 (2013).

  • 56.

    Neumann, T., Radtke, H. & Seifert, T. On the importance of Major Baltic Inflows for oxygenation of the central Baltic Sea. J. Geophys. Res. 122, 1090–1101 (2017).

  • 57.

    Blomqvist, S., Ekeroth, N., Elmgren, R. & Hall, P. O. J. Long overdue improvement of box corer sampling. Mar. Ecol. Prog. Ser. 538, 13–21 (2015).

  • 58.

    Revsbech, N. P. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34, 474–478 (1989).

  • 59.

    Jeroschewski, P., Steuckart, C. & Kühl, M. An amperometric microsensor for the determination of H2S in aquatic environments. Anal. Chem. 68, 4351–4357 (1996).

  • 60.

    Andersen, K., Kjær, T. & Revsbech, N. P. An oxygen insensitive microsensor for nitrous oxide. Sens. Actuators B Chem. 81, 42–48 (2001).

  • 61.

    De Grisse A. T. Redescription ou Modifications De Quelques Techniques Utilisées Dans L’étude Des Nématodes Phytoparasitaires. (Mededelingen van de Rijksfakulteit voor Landbouwwetenschappen, Gent, 1969).

  • 62.

    St John J. SeqPrep. (2011). Available: https://github.com/jstjohn/SeqPrep.

  • 63.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).

  • 64.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

  • 65.

    Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. (2010).

  • 66.

    Ewels, P., Magnusson, M., Käller, M. & Lundin, S. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

  • 67.

    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).

  • 68.

    Wood D. E., Salzberg S. L. J. G. B. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).

  • 69.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

  • 70.

    Holovachov O., Haenel Q., Bourlat S. J., Jondelius U. Taxonomy assignment approach determines the efficiency of identification of OTUs in marine nematodes. R. Soc. Open Sci. 4, 1–15 (2017).

  • 71.

    Broman, E. et al. Salinity drives meiofaunal community structure dynamics across the Baltic ecosystem. Mol. Ecol. 28, 3813–3829 (2019).

  • 72.

    McDonald, D. et al. The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. GigaScience 1, 7 (2012).

  • 73.

    Robertson, C. E. et al. Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data. Bioinformatics 29, 3100–3101 (2013).

  • 74.

    Westreich, S. T., Treiber, M. L., Mills, D. A., Korf, I. & Lemay, D. G. SAMSA2: a standalone metatranscriptome analysis pipeline. BMC Bioinform. 19, 175–175 (2018).

  • 75.

    Bağcı C., Beier S., Górska A., Huson D. H. Introduction to the Analysis of Environmental Sequences: Metagenomics with MEGAN. in: Evolutionary Genomics: Statistical and Computational Methods (ed Anisimova M). (Springer, New York, 2019).

  • 76.

    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).

  • 77.

    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

  • 78.

    Huson, D. H. & Mitra, S. Introduction to the analysis of environmental sequences: metagenomics with MEGAN. Methods Mol. Biol. 856, 415–429 (2012).

  • 79.

    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).

    • Google Scholar

  • Source: Ecology - nature.com

    3 Questions: Emre Gençer on the evolving role of hydrogen in the energy system

    Hurricane-Induced Rainfall is a Stronger Predictor of Tropical Forest Damage in Puerto Rico Than Maximum Wind Speeds