in

Unprecedented Fe delivery from the Congo River margin to the South Atlantic Gyre

  • 1.

    Buck, K. N., Lohan, M. C., Berger, C. J. M. & Bruland, K. W. Dissolved iron speciation in two distinct river plumes and an estuary: implications for riverine iron supply. Limnol. Oceanogr. 52, 843–855 (2007).

  • 2.

    Figuères, G., Martin, J. M. & Meybeck, M. Iron behaviour in the Zaire estuary. Neth. J. Sea Res. 12, 338–344 (1978).

    • Article
    • Google Scholar
  • 3.

    Elrod, V. A., Berelson, W. M., Coale, K. H. & Johnson, K. S. The flux of iron from continental shelf sediments: a missing source for global budgets. Geophys. Res. Lett. 31, 2–5 (2004).

  • 4.

    Jickells, T. Atmospheric inputs of metals and nutrients to the oceans: their magnitude and effects. Mar. Chem. 48, 199–214 (1995).

  • 5.

    Windom, HerbertL. et al. Submarine groundwater discharge: a large, previously unrecognized source of dissolved iron to the South Atlantic Ocean. Mar. Chem. 102, 252–266 (2006).

  • 6.

    Boyle, E. A., Edmond, J. M. & Sholkovitz, E. R. The mechanism of iron removal in estuaries. Geochim. Cosmochim. Acta 41, 1313–1324 (1977).

  • 7.

    Birchill, A. J. et al. The eastern extent of seasonal iron limitation in the high latitude North Atlantic Ocean. Sci. Rep. 9, 1–12 (2019).

  • 8.

    Gaillardet, J., Viers, J. & Dupré, B. Trace elements in river waters. In: Surface and Groundwater Weathering and Soils (ed. Drever, J. I.) 225–272 (Elsevier-Pergamon, Oxford, 2013).

  • 9.

    Raiswell, R. & Canfield, D. E. The iron biogeochemical cycle past and present (Geochemical Perspectives, 2012).

  • 10.

    Browning, T. J. et al. Nutrient co-limitation at the boundary of an oceanic gyre. Nature 551, 242–246 (2017).

  • 11.

    Hopkins, J. et al. Detection and variability of the Congo River plume fromsatellite derived sea surface temperature, salinity, ocean colour and sea level. Remote Sens. Environ. 139, 365–385 (2013).

  • 12.

    Stramma, L. & England, M. H. On the water masses and mean circulation Atlantic Ocean. J. Geophys. Res. 104, 863–20,883 (1999).

    • Article
    • Google Scholar
  • 13.

    Eisma, D. & van Bennekom, A. J. The Zaire river and estuary and the Zaire outflow in the Atlantic Ocean. Neth. J. Sea Res. 12, 255–272 (1978).

    • Article
    • Google Scholar
  • 14.

    Kwon, E. Y. et al. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophys. Res. Lett., 41, 8438–8444 (2014).

  • 15.

    Moore, W. S. & Shaw, T. J. Fluxes and behavior of radium isotopes, barium, and uranium in seven Southeastern US rivers and estuaries. Mar. Chem. 108, 236–254 (2008).

  • 16.

    Key, R. M., Stallard, R. F., Moore, W. S. & Sarmiento, J. L. Distribution and flux of 226Ra and 228Ra in the Amazon River estuary. J. Geophys. Res. 90, 6995–7004 (1985).

  • 17.

    Powell, R. T. & Wilson-Finelli, A. Importance of organic Fe complexing ligands in the Mississippi River plume. Estuar. Coast. Shelf Sci. 58, 757–763 (2003).

  • 18.

    Krachler, R., Jirsa, F. & Ayromlou, S. Factors influencing the dissolved iron input by river water to the open ocean. Biogeosciences 2, 311–315 (2005).

  • 19.

    Elderfield, H. & Hepworth, A. Diagenesis, metals and pollution in estuaries. Mar. Pollut. Bull. 6, 85–87 (1975).

  • 20.

    Beckler, J. S., Kiriazis, N., Rabouille, C., Stewart, F. J. & Taillefert, M. Importance of microbial iron reduction in deep sediments of river-dominated continental-margins. Mar. Chem. 178, 22–34 (2016).

  • 21.

    Taillefert, M. et al. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: part II – iron–sulfur coupling. Deep. Res. Part II 142, 151–166 (2017).

  • 22.

    Vangriesheim, A. et al. The influence of Congo River discharges in the surface and deep layers of the Gulf of Guinea. Deep. Res. Part II 56, 2183–2196 (2009).

  • 23.

    Palma, E. D. & Matano, R. P. Journal of geophysical research: oceans an idealized study of near equatorial river plumes. J. Geophys. Res. Ocean. 122, 3599–3620 (2017).

  • 24.

    Moore, W. S. Determining coastal mixing rates using radium isotopes. Cont. Shelf Res. 20, 1993–2007 (2000).

  • 25.

    Wu, J. & Luther, G. W. Spatial and temporal distribution of iron in the surface water of the northwestern Atlantic Ocean. Geochim. Cosmochim. Acta 60, 2729–2741 (1996).

  • 26.

    Rijkenberg, M. J. A. et al. Fluxes and distribution of dissolved iron in the eastern (sub-) tropical North Atlantic Ocean. Global Biogeochem. Cycles 26, GB3004 (2012).

  • 27.

    Rijkenberg, M. J. A. et al. The distribution of dissolved iron in the West Atlantic Ocean. PLoS ONE 9, 1–14 (2014).

  • 28.

    Elsinger, R. J. & Moore, W. S. 226Ra and 228Ra in the mixing zones of the Pee Dee River-Winyah Bay, Yangtze River and Delaware Bay Estuaries. Estuar. Coast. Shelf Sci. 18, 601–613 (1984).

  • 29.

    Li, Y. H., Mathieu, G., Biscaye, P. & Simpson, H. J. The flux of 226Ra from estuarine and continental shelf sediments. Earth Planet. Sci. Lett. 37, 237–241 (1977).

  • 30.

    Bowden, K. Physical factors: salinity, temperature, circulation and mixing processes. in: Chemistry and Biogeochemistry of Estuaries (eds. Olausson, E., Cato, I.) 38–68 (John Wiley and Sons, 1980).

  • 31.

    Milliman, J. D. & Farnsworth, K. L. River Discharge to the Coastal Ocean: A Global Synthesis (Cambridge University Press, 2011).

  • 32.

    McKee, B. A. U- and Th-series nuclides in estuarine environments. In: Radioactivity in the Environment 13, U–Th Series Nuclides in Aquatic Systems (eds. S. Krishnaswami and J. Kirk Cochran) 193–225 (Elsevier, 2008).

  • 33.

    Moore, W. S., Sarmiento, J. L. & Key, R. M. Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean. Nat. Geosci. 1, 309–311 (2008).

  • 34.

    Moore, W. S. Using the radium quartet for evaluating groundwater input and water exchange in salt marshes. Geochim. Cosmochim. Acta 60, 4645–4652 (1996).

  • 35.

    Rodellas, V., Garcia-Orellana, J., Masqué, P. & Font-Muñoz, J. S. The influence of sediment sources on radium-derived estimates of submarine groundwater discharge. Mar. Chem. 171, 107–117 (2015).

  • 36.

    Vieira, L. H. et al. Benthic fluxes of trace metals in the Chukchi Sea and their transport into the Arctic Ocean. Mar. Chem. 208, 43–55 (2019).

  • 37.

    Sanial, V. et al. Radium-228 as a tracer of dissolved trace element inputs from the Peruvian continental margin. Mar. Chem. 201, 20–34 (2018).

  • 38.

    Charette, M. A. et al. Coastal ocean and shelf-sea biogeochemical cycling of trace elements and isotopes: lessons learned from GEOTRACES. Philos. Trans. R. Soc. A 374, 1–19 (2016). 20160.

  • 39.

    Materia, S., Gualdi, S., Navarra, A. & Terray, L. The effect of Congo River freshwater discharge on eastern equatorial Atlantic climate variability. Clim. Dyn. 39, 2109–2125 (2012).

    • Article
    • Google Scholar
  • 40.

    Signorini, S. R., Murtugudde, R. G., Mcclain, C. R., Christian, P. J. R. & Busalacchi, A. J. Biological and physical signatures in the tropical and subtropical Atlantic. J. Geophys. Res. 104, 18367–18385 (1999).

  • 41.

    Tagliabue, A., Aumont, O. & Bopp, L. The impact of different external sources of iron on the global carbon cycle. Geophys. Res. Lett. 41, 920–926 (2014).

  • 42.

    Duce, R. A. & Tindale, N. W. Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceanogr. 36, 1715–1726 (1991).

  • 43.

    Sunda, W. G. & Huntsman, S. A. Effect of sunlight on redox cycles of manganese in the southwestern Sargasso Sea. Deep Sea Res. Part A 35, 1297–1317 (1988).

  • 44.

    Moffett, J. W. & Ho, J. Oxidation of cobalt and manganese in seawater via a common microbially catalyzed pathway. Geochim. Cosmochim. Acta 60, 3415–3424 (1996).

  • 45.

    Sunda, W. G., Huntsman, S. A. & Harvey, G. R. Photoreduction of manganese oxides in seawater and its geochemical and biological implications. Nature 301, 234–236 (1983).

  • 46.

    Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

  • 47.

    Barraqueta, J. L. M. et al. Atmospheric deposition fluxes over the Atlantic Ocean: A GEOTRACES case study. Biogeosciences 16, 1525–1542 (2019).

  • 48.

    Paris, R., Desboeufs, K. V. & Journet, E. Variability of dust iron solubility in atmospheric waters: investigation of the role of oxalate organic complexation. Atmos. Environ. 45, 6510–6517 (2011).

  • 49.

    Guieu, C., Loÿe-Pilot, M. D., Ridame, C. & Thomas, C. Chemical characterization of the Saharan dust end-member: some biogeochemical implications for the western Mediterranean Sea. J. Geophys. Res. Atmos. 107, ACH 5-1-ACH 5-11 (2002).

  • 50.

    Spencer, R. G. M. et al. An initial investigation into the organic matter biogeochemistry of the Congo River. Geochim. Cosmochim. Acta 84, 614–627 (2012).

  • 51.

    Sholkovitz, E. R., Boyle, E. A. & Price, N. B. The removal of dissolved humic acids and iron during estuarine mixing. Earth Planet. Sci. Lett. 40, 130–136 (1978).

  • 52.

    Benner, R. & Opsahl, S. Molecular indicators of the sources and transformations of dissolved organic matter in the Mississippi river plume. Org. Geochem. 32, 597–611 (2001).

  • 53.

    Mayer, L. M. Retention of riverine iron in estuaries. Geochim. Cosmochim. Acta 46, 1003–1009 (1982).

  • 54.

    Rijkenberg, M. J. A., Slagter, H. A., Rutgers van der Loeff, M., van Ooijen, J. & Gerringa, L. J. A. Dissolved Fe in the deep and upper Arctic ocean with a focus on Fe limitation in the Nansen Basin. Front. Mar. Sci. 5, 1–14 (2018).

    • Article
    • Google Scholar
  • 55.

    Mcinnes, K. L., Erwin, T. A. & Bathols, J. M. Global climate model projected changes in 10 m wind speed and direction due to anthropogenic climate change. Atmos. Sci. Lett. 12, 325–333 (2011).

  • 56.

    Zhang, R. & Delworth, T. L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Clim. 18, 1853–1860 (2005).

  • 57.

    Dong, B.-W. & Sutton, R. T. Adjustment of the coupled ocean-atmosphere system to a sudden change in the Thermohaline Circulation. Geophys. Res. Lett. 29, 18-1–18-4 (2002).

  • 58.

    Hänsler, A., Saeed, F. & Jacob, D. Assessment of projected climate change signals over central Africa based on a multitude of global and regional climate projections. in: Climate Change Scenarios for the Congo Basin (eds. Hänsler A, Jacob, D., Kabat, P., Ludwig, F.) 1–15, (Climate Service Centre Report No. 11, 2013).

  • 59.

    Moore, W. S. & Arnold, R. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. J. Geophys. Res. 101, 1321–1329 (1996).

  • 60.

    Scholten, J. C. et al. Preparation of Mn-fiber standards for the efficiency calibration of the delayed coincidence counting system (RaDeCC). Mar. Chem. 121, 206–214 (2010).

  • 61.

    Hsieh, Y. Te & Henderson, G. M. Precise measurement of 228Ra/226Ra ratios and Ra concentrations in seawater samples by multi-collector ICP mass spectrometry. J. Anal. At. Spectrom. 26, 1338–1346 (2011).

  • 62.

    Rapp, I., Schlosser, C., Rusiecka, D., Gledhill, M. & Achterberg, E. P. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry. Anal. Chim. Acta 976, 1–13 (2017).

  • 63.

    Vieira, L. H. Radium Isotopes as Tracers of Element Cycling at Ocean Boundaries. (Christian-Albrechts-Universität zu Kiel, 2019).

  • 64.

    Moore, W. S. Ages of continental shelf waters determined from 223Ra and 224Ra. J. Geophys. Res. Ocean. 105, 22117–22122 (2004).

  • 65.

    GEBCO Compilation Group. GEBCO 2019. (GEBCO Compilation Group, 2019). Available at: https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e.

  • 66.

    Wessel, P. & Smith, W. H. F. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. Solid Earth 101, 8741–8743 (1996).

    • Article
    • Google Scholar
  • 67.

    Joung, D. J. & Shiller, A. M. Temporal and spatial variations of dissolved and colloidal trace elements in Louisiana Shelf waters. Mar. Chem. 181, 25–43 (2016).

  • 68.

    Symes, J. L. & Kester, D. R. The distribution of iron in the Northwest Atlantic. Mar. Chem. 17, 57–74 (1985).

  • 69.

    Zhang, R. et al. Distribution of dissolved iron in the Pearl River (Zhujiang) estuary and the northern continental slope of the South China Sea. Deep. Res. Part II 167 14–24 (2019).


  • Source: Ecology - nature.com

    For cheaper solar cells, thinner really is better

    Testing the waters