in

Warming and acidification threaten glass sponge Aphrocallistes vastus pumping and reef formation

  • 1.

    Bell, J. J. Functional roles of marine sponges. Estuar. Coast Shelf Sci. 79, 341–353 (2008).

  • 2.

    De Goeij, J. M., Van Den Berg, H., Van Oostveen, M. M., Epping, E. H. & Van Duyl, F. C. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar. Ecol. Prog. Ser. 357, 139 (2008).

  • 3.

    McMurray, S. E., Johnson, Z. I., Hunt, D. E., Pawlik, J. R. & Finelli, C. M. Selective feeding by the giant barrel sponge enhances foraging efficiency. Limnol. Oceanogr. 61(4), 1271–1286 (2016).

  • 4.

    Diaz, M. C. & Rützler, K. Sponges: an essential component of Caribbean coral reefs. Bull. Mar. Sci. 69, 535–546 (2001).

    • Google Scholar
  • 5.

    Archer, S. K., Stevens, J. L., Rossi, R. E., Matterson, K. O. & Layman, C. A. Abiotic conditions drive significant variability in nutrient processing by a common Caribbean sponge, Ircinia felix. Limnol. Oceanogr. 62, 1783–1793 (2017).

  • 6.

    Dunham, A. et al. Assessing condition and ecological role of deep-water biogenic habitats: Glass sponge reefs in the Salish Sea. Mar. Environ. Res. 141, 88–99 (2018).

  • 7.

    Conway, K. W., Barrie, J. V., Austin, W. C. & Luternauer, J. L. Holocene sponge bioherms on the western Canadian continental shelf. Cont. Shelf. Res. 11(8–10), 771–90 (1991).

  • 8.

    Krautter, M., Conway, K. W., Barrie, J. V. & Neuweiler, M. Discovery of a “living dinosaur”: globally unique modern hexactinellid sponge reefs off British Columbia, Canada. Facies 44, 265–82 (2001).

    • Article
    • Google Scholar
  • 9.

    Van Soest, R. W. M. et al. Global Diversity of Sponges (Porifera). PLoS ONE 7, e35105 (2012).

  • 10.

    Chu, J. W. F., Maldonado, M., Yahel, G. & Leys, S. P. Glass sponge reefs as a silicon sink. Mar. Ecol. Prog. Ser. 441, 1–14 (2011).

  • 11.

    Kahn, A. S., Yahel, G., Chu, J. W. F., Tunnicliffe, V. & Leys, S. P. Benthic grazing and carbon sequestration by deep-water glass sponge reefs. Limnol. Oceanogr. 60(1), 78–88 (2015).

  • 12.

    Pörtner, H. O. Ecosystem effects of ocean acidification in times of ocean warming: a physiologists view. Mar. Ecol. Prog. Ser. 373, 203–217 (2008).

  • 13.

    Massaro, A. J. Selective filtration in the tropical marine sponge Rhopaloeides odorabile: impacts of elevated seawater temperature on feeding behavior. Independent Study Project (ISP) Collection 774 (2009).

  • 14.

    Wisshak, M., Schönberg, C. H., Form, A. & Freiwald, A. Ocean acidification accelerates reef bioerosion. PLoS One 7(9), e45124 (2012).

  • 15.

    Duckworth, A. R. & Peterson, B. J. Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells. Mar. Biol. 160, 27–35 (2013).

  • 16.

    Goodwin, C., Rodolfo Metalpa, R., Picton, B. & Hall-Spencer, J. M. Effects of ocean acidification on sponge communities. Mar Ecol. 35, 41–49 (2014).

  • 17.

    Vicente, J., Silbiger, N. J., Beckley, B. A., Raczkowski, C. W. & Hill, R. T. Impact of high pCO2 and warmer temperatures on the process of silica biomineralization in the sponge Mycale grandis. ICES J. Mar. Sci. 73(3), 704–714 (2016).

    • Article
    • Google Scholar
  • 18.

    Bates, T. E. M. & Bell, J. J. Responses of two temperate sponge species to ocean acidification. New Zeal. J. Mar. Fresh. 52(2), 247–263 (2018).

  • 19.

    Riisgård, H. U., Thomassen, S., Jakobsen, H., Weeks, J. M. & Larsen, P. S. Suspension feeding in marine sponges Halichondria panicea and Haliclona urceolus: effects of temperature on filtration rate and energy cost of pumping. Mar. Ecol. Prog. Ser. 96(2), 177–188 (1993).

  • 20.

    Liu, G., Feng, Q. & Gu, S. Extinction pattern and process of siliceous sponge spicules in deep-water during the latest Permian in South China. Sci. China Ser. D. 51, 1623–1632 (2008).

  • 21.

    Clarkson, M. O. et al. Ocean acidification and the Permo-Triassic mass extinction. Science 348, 229–232 (2015).

  • 22.

    Morrow, K. M. et al. Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. ISME Journal 9, 894–908 (2014).

  • 23.

    Fillinger, L., Janussen, D., Lundälv, T. & Richter, C. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Current Biology 23, 1330–1334 (2013).

  • 24.

    Tompkins-MacDonald, G. J. & Leys, S. P. Glass sponges arrest pumping in response to sediment: implications for the physiology of the hexactinellid conduction system. Marine Biology 154(6), 973 (2008).

    • Article
    • Google Scholar
  • 25.

    Grant, N., Matveev, E., Kahn, A. S. & Leys, S. P. Suspended sediment causes feeding current arrests in situ in the glass sponge Aphrocallistes vastus. Mar. Env. Res. 137, 111–120 (2018).

  • 26.

    Massaro, A. J., Weisz, J. B., Hill, M. S. & Webster, N. S. Behavioral and morphological changes caused by thermal stress in the great barrier reef sponge Rhopaloeides odorabile. J. Exp. Mar. Biol. Ecol. 416–417, 55–60 (2012).

    • Article
    • Google Scholar
  • 27.

    Leys, S. The choanosome of hexactinellid sponges. Invertebr. Biol. 118, 221–235 (1999).

    • Article
    • Google Scholar
  • 28.

    Ribes, M., Coma, R. & Gili, J. R. Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Mar. Ecol. Prog. Ser. 176, 179–190 (1999).

  • 29.

    Leys, S. P. & Meech, R. W. Physiology of coordination in sponges. Can. J. Zool. 84, 288–306 (2006).

    • Article
    • Google Scholar
  • 30.

    Marliave, J. B., Borden, L. A., Schultz, J. A., Gibbs, D. M. & Dennison, G. J. Formation, persistence, and recovery of glass sponge reefs: A case study. In Invertebrates-Ecophysiology and Management, InTechOpen: Aquatic Invertebrates. https://doi.org/10.5772/intechopen.82325 (2018).

  • 31.

    NOAA/National Weather Service. El Niño/Southern oscillation (ENSO) diagnostic discussion. Source, https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_mar2015/ensodisc.html (2015)

  • 32.

    Bennett, H. M. et al. Interactive effects of temperature and pCO2 on sponges: from the cradle to the grave. Glob. Change Biol. 23, 2031–2046 (2017).

  • 33.

    Bennett, H., Bell, J. J., Davy, S. K., Webster, N. S. & Francis, D. S. Elucidating the sponge stress response; lipids and fatty acids can facilitate survival under future climate scenarios. Glob. Change Biol. 24(7), 3130–3144 (2018).

  • 34.

    Marliave, J. B. Cloud Sponge, Aphrocallistes vastus (Porifera: Hexactinellida), fragment healing and reattachment. Can. Field Nat. 129(4), 399–402 (2015).

    • Article
    • Google Scholar
  • 35.

    Marliave, J. B., Gibbs, D. M., Young, S. & Borden, L. 2011 climate regime: revealed by seabed biodiversity. In: P.C., Chandler, S.A., King, and J., Boldt (Eds.). State of the physical, biological and selected fishery resources of Pacific Canadian marine ecosystems in 2017. Can. Tech. Rep. Fish. Aquat. Sci. 3266: viii + 245 p (2018).

  • 36.

    Krautter, M., Conway, K. W. & Barrie, J. V. Recent hexactinosidan sponge reefs (silicate mounds) off British Columbia, Canada: frame-building processes. J. of Paleont. 80, 38–48 (2006).

    • Article
    • Google Scholar
  • 37.

    Ehrlich, H. & Worch, H. Sponges as natural composites: from biomimetic potential to development of new biomaterials. In: E., Hajdu (Ed.). Porifera Research: Biodiversity, Innovation & Sustainability, 217–223 (2007).

  • 38.

    Ehrlich, H. et al. First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). J. Exp. Zool. Part B 308B, 473–483 (2007).

  • 39.

    Ehrlich, H. et al. Calcite reinforced silica–silica joints in the biocomposite skeleton of the deep–sea glass sponge. Adv. Funct. Mater. 21, 3473–3481 (2011).

  • 40.

    Chu, J. W. F. Biological patterns and processes of glass sponge reefs. MSc thesis, University of Alberta (2010).

  • 41.

    Marliave, J. B., Conway, K. W., Gibbs, D. M., Lamb, A. & Gibbs, C. Biodiversity and rockfish recruitment in sponge gardens and bioherms of southern British Columbia, Canada. Mar. Biol. 156, 2247–2254 (2009).

    • Article
    • Google Scholar
  • 42.

    Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Annu. Rev. Mar. Sci. 12, 3.1–3.23 (2020).

    • Article
    • Google Scholar
  • 43.

    Kahn, A., Chu, J. W. F. & Leys, S. P. Trophic ecology of glass sponge reefs in the Strait of Georgia, British Columbia. Sci. Rep. 8(756), 1–11 (2018).

    • Google Scholar
  • 44.

    Peterson, B. J., Chester, C. M., Jochem, F. J. & Fourqurean, J. W. Potential role of sponge communities in controlling phytoplankton blooms in Florida Bay. Mar. Ecol. Prog. Ser. 328, 93–103 (2006).

  • 45.

    Sunday, J. M. et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change 7, 81–86 (2017).

  • 46.

    Harley, C. D. G. Climate change, keystone predation, and biodiversity loss. Science 334, 1124–1127 (2011).

  • 47.

    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. (2014).

  • 48.

    Dickson, A. G., Sabine, C. L. & Christian, J. R. Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication 3, 191 (2007).

    • Google Scholar
  • 49.

    Pierrot, D., Lewis, E. & Wallace, D. W. R. MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, U.S. Department of Energy, Tennessee (2006).

  • 50.

    Morganti, T., Yahel, G., Ribes, M. & Coma, R. VacuSIP, an improved InEx method for in situ measurement of particulate and dissolved compounds processed by active suspension feeders. JoVE 114, e54221 (2016).

    • Google Scholar
  • 51.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL, https://www.R-project.org/ (2017).

  • 52.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-139, URL, https://CRAN.R-project.org/package=nlme (2019).

  • 53.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. & Smith, G. Mixed Effects Models and Extensions in Ecology with R. Springer (2009).

  • 54.

    Therneau, T. A Package for Survival Analysis in S. version 2.38, URL, https://CRAN.R-project.org/package=survival (2015).

  • 55.

    Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model. Springer, New York. ISBN 0-387-98784-3 (2000).


  • Source: Ecology - nature.com

    Melting glaciers cool the Southern Ocean

    3 Questions: Energy studies at MIT and the next generation of energy leaders