
Bell, J. J. Functional roles of marine sponges. Estuar. Coast Shelf Sci. 79, 341–353 (2008).
De Goeij, J. M., Van Den Berg, H., Van Oostveen, M. M., Epping, E. H. & Van Duyl, F. C. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar. Ecol. Prog. Ser. 357, 139 (2008).
McMurray, S. E., Johnson, Z. I., Hunt, D. E., Pawlik, J. R. & Finelli, C. M. Selective feeding by the giant barrel sponge enhances foraging efficiency. Limnol. Oceanogr. 61(4), 1271–1286 (2016).
Diaz, M. C. & Rützler, K. Sponges: an essential component of Caribbean coral reefs. Bull. Mar. Sci. 69, 535–546 (2001).
Archer, S. K., Stevens, J. L., Rossi, R. E., Matterson, K. O. & Layman, C. A. Abiotic conditions drive significant variability in nutrient processing by a common Caribbean sponge, Ircinia felix. Limnol. Oceanogr. 62, 1783–1793 (2017).
Dunham, A. et al. Assessing condition and ecological role of deep-water biogenic habitats: Glass sponge reefs in the Salish Sea. Mar. Environ. Res. 141, 88–99 (2018).
Conway, K. W., Barrie, J. V., Austin, W. C. & Luternauer, J. L. Holocene sponge bioherms on the western Canadian continental shelf. Cont. Shelf. Res. 11(8–10), 771–90 (1991).
Krautter, M., Conway, K. W., Barrie, J. V. & Neuweiler, M. Discovery of a “living dinosaur”: globally unique modern hexactinellid sponge reefs off British Columbia, Canada. Facies 44, 265–82 (2001).
Van Soest, R. W. M. et al. Global Diversity of Sponges (Porifera). PLoS ONE 7, e35105 (2012).
Chu, J. W. F., Maldonado, M., Yahel, G. & Leys, S. P. Glass sponge reefs as a silicon sink. Mar. Ecol. Prog. Ser. 441, 1–14 (2011).
Kahn, A. S., Yahel, G., Chu, J. W. F., Tunnicliffe, V. & Leys, S. P. Benthic grazing and carbon sequestration by deep-water glass sponge reefs. Limnol. Oceanogr. 60(1), 78–88 (2015).
Pörtner, H. O. Ecosystem effects of ocean acidification in times of ocean warming: a physiologists view. Mar. Ecol. Prog. Ser. 373, 203–217 (2008).
Massaro, A. J. Selective filtration in the tropical marine sponge Rhopaloeides odorabile: impacts of elevated seawater temperature on feeding behavior. Independent Study Project (ISP) Collection 774 (2009).
Wisshak, M., Schönberg, C. H., Form, A. & Freiwald, A. Ocean acidification accelerates reef bioerosion. PLoS One 7(9), e45124 (2012).
Duckworth, A. R. & Peterson, B. J. Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells. Mar. Biol. 160, 27–35 (2013).
Goodwin, C., Rodolfo Metalpa, R., Picton, B. & Hall-Spencer, J. M. Effects of ocean acidification on sponge communities. Mar Ecol. 35, 41–49 (2014).
Vicente, J., Silbiger, N. J., Beckley, B. A., Raczkowski, C. W. & Hill, R. T. Impact of high pCO2 and warmer temperatures on the process of silica biomineralization in the sponge Mycale grandis. ICES J. Mar. Sci. 73(3), 704–714 (2016).
Bates, T. E. M. & Bell, J. J. Responses of two temperate sponge species to ocean acidification. New Zeal. J. Mar. Fresh. 52(2), 247–263 (2018).
Riisgård, H. U., Thomassen, S., Jakobsen, H., Weeks, J. M. & Larsen, P. S. Suspension feeding in marine sponges Halichondria panicea and Haliclona urceolus: effects of temperature on filtration rate and energy cost of pumping. Mar. Ecol. Prog. Ser. 96(2), 177–188 (1993).
Liu, G., Feng, Q. & Gu, S. Extinction pattern and process of siliceous sponge spicules in deep-water during the latest Permian in South China. Sci. China Ser. D. 51, 1623–1632 (2008).
Clarkson, M. O. et al. Ocean acidification and the Permo-Triassic mass extinction. Science 348, 229–232 (2015).
Morrow, K. M. et al. Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. ISME Journal 9, 894–908 (2014).
Fillinger, L., Janussen, D., Lundälv, T. & Richter, C. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Current Biology 23, 1330–1334 (2013).
Tompkins-MacDonald, G. J. & Leys, S. P. Glass sponges arrest pumping in response to sediment: implications for the physiology of the hexactinellid conduction system. Marine Biology 154(6), 973 (2008).
Grant, N., Matveev, E., Kahn, A. S. & Leys, S. P. Suspended sediment causes feeding current arrests in situ in the glass sponge Aphrocallistes vastus. Mar. Env. Res. 137, 111–120 (2018).
Massaro, A. J., Weisz, J. B., Hill, M. S. & Webster, N. S. Behavioral and morphological changes caused by thermal stress in the great barrier reef sponge Rhopaloeides odorabile. J. Exp. Mar. Biol. Ecol. 416–417, 55–60 (2012).
Leys, S. The choanosome of hexactinellid sponges. Invertebr. Biol. 118, 221–235 (1999).
Ribes, M., Coma, R. & Gili, J. R. Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Mar. Ecol. Prog. Ser. 176, 179–190 (1999).
Leys, S. P. & Meech, R. W. Physiology of coordination in sponges. Can. J. Zool. 84, 288–306 (2006).
Marliave, J. B., Borden, L. A., Schultz, J. A., Gibbs, D. M. & Dennison, G. J. Formation, persistence, and recovery of glass sponge reefs: A case study. In Invertebrates-Ecophysiology and Management, InTechOpen: Aquatic Invertebrates. https://doi.org/10.5772/intechopen.82325 (2018).
NOAA/National Weather Service. El Niño/Southern oscillation (ENSO) diagnostic discussion. Source, https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_mar2015/ensodisc.html (2015)
Bennett, H. M. et al. Interactive effects of temperature and pCO2 on sponges: from the cradle to the grave. Glob. Change Biol. 23, 2031–2046 (2017).
Bennett, H., Bell, J. J., Davy, S. K., Webster, N. S. & Francis, D. S. Elucidating the sponge stress response; lipids and fatty acids can facilitate survival under future climate scenarios. Glob. Change Biol. 24(7), 3130–3144 (2018).
Marliave, J. B. Cloud Sponge, Aphrocallistes vastus (Porifera: Hexactinellida), fragment healing and reattachment. Can. Field Nat. 129(4), 399–402 (2015).
Marliave, J. B., Gibbs, D. M., Young, S. & Borden, L. 2011 climate regime: revealed by seabed biodiversity. In: P.C., Chandler, S.A., King, and J., Boldt (Eds.). State of the physical, biological and selected fishery resources of Pacific Canadian marine ecosystems in 2017. Can. Tech. Rep. Fish. Aquat. Sci. 3266: viii + 245 p (2018).
Krautter, M., Conway, K. W. & Barrie, J. V. Recent hexactinosidan sponge reefs (silicate mounds) off British Columbia, Canada: frame-building processes. J. of Paleont. 80, 38–48 (2006).
Ehrlich, H. & Worch, H. Sponges as natural composites: from biomimetic potential to development of new biomaterials. In: E., Hajdu (Ed.). Porifera Research: Biodiversity, Innovation & Sustainability, 217–223 (2007).
Ehrlich, H. et al. First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). J. Exp. Zool. Part B 308B, 473–483 (2007).
Ehrlich, H. et al. Calcite reinforced silica–silica joints in the biocomposite skeleton of the deep–sea glass sponge. Adv. Funct. Mater. 21, 3473–3481 (2011).
Chu, J. W. F. Biological patterns and processes of glass sponge reefs. MSc thesis, University of Alberta (2010).
Marliave, J. B., Conway, K. W., Gibbs, D. M., Lamb, A. & Gibbs, C. Biodiversity and rockfish recruitment in sponge gardens and bioherms of southern British Columbia, Canada. Mar. Biol. 156, 2247–2254 (2009).
Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Annu. Rev. Mar. Sci. 12, 3.1–3.23 (2020).
Kahn, A., Chu, J. W. F. & Leys, S. P. Trophic ecology of glass sponge reefs in the Strait of Georgia, British Columbia. Sci. Rep. 8(756), 1–11 (2018).
Peterson, B. J., Chester, C. M., Jochem, F. J. & Fourqurean, J. W. Potential role of sponge communities in controlling phytoplankton blooms in Florida Bay. Mar. Ecol. Prog. Ser. 328, 93–103 (2006).
Sunday, J. M. et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change 7, 81–86 (2017).
Harley, C. D. G. Climate change, keystone predation, and biodiversity loss. Science 334, 1124–1127 (2011).
IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. (2014).
Dickson, A. G., Sabine, C. L. & Christian, J. R. Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication 3, 191 (2007).
Pierrot, D., Lewis, E. & Wallace, D. W. R. MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, U.S. Department of Energy, Tennessee (2006).
Morganti, T., Yahel, G., Ribes, M. & Coma, R. VacuSIP, an improved InEx method for in situ measurement of particulate and dissolved compounds processed by active suspension feeders. JoVE 114, e54221 (2016).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL, https://www.R-project.org/ (2017).
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-139, URL, https://CRAN.R-project.org/package=nlme (2019).
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. & Smith, G. Mixed Effects Models and Extensions in Ecology with R. Springer (2009).
Therneau, T. A Package for Survival Analysis in S. version 2.38, URL, https://CRAN.R-project.org/package=survival (2015).
Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model. Springer, New York. ISBN 0-387-98784-3 (2000).
Source: Ecology - nature.com