in

Widespread subsidence and carbon emissions across Southeast Asian peatlands

  • 1.

    Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016).

    Article  Google Scholar 

  • 2.

    Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).

    Article  Google Scholar 

  • 3.

    Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011).

  • 4.

    Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C. & Page, S. E. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environ. Res. Lett. 12, 024014 (2017).

    Article  Google Scholar 

  • 5.

    Evans, C. D. et al. Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma 338, 410–421 (2019).

    Article  Google Scholar 

  • 6.

    Western Johore Integrated Agricultural Development Project, Peat Soil Management Study (Department of Irrigation and Drainage (DID), Kuala Lumpur, Malaysia and Land and Water Research Group (LAWOO), 1996).

  • 7.

    Taylor, D. & Ali, M. Biogeochemical Responses to Land Cover Changes in Coastal Peatland Catchments: Spatial and Temporal Fluxes in Greenhouse Gas Emissions and Peat Subsidence, Jambi Province, Sumatra (SARCS/UNOP, 2001).

  • 8.

    Othman, H., Mohammed, A. T., Darus, F. M., Harun, M. H. & Zambri, M. P. Best management practices for oil palm cultivation peat: ground water-table maintenance in relation to peat subsidence and estimation of CO2 emissions at Sessang, Sarawak. J. Oil Palm Res. 23, 1078–1086 (2011).

    Google Scholar 

  • 9.

    Couwenberg, J. & Hooijer, A. Towards robust subsidence-based soil carbon emission factors for peat soils in south-east Asia, with special reference to oil palm plantations. Mires Peat 12, 1 (2013).

    Google Scholar 

  • 10.

    Nagano, T. et al. Subsidence and soil CO2 efflux in tropical peatland in southern Thailand under various water table and management conditions. Mires Peat 11, 6 (2013).

  • 11.

    Wösten, J., Ismail, A. & van Wijk, A. Peat subsidence and its practical implications: a case study in Malaysia. Geoderma 78, 25–36 (1997).

    Article  Google Scholar 

  • 12.

    Ritzema, H., Limin, S., Kusin, K., Jauhiainen, J. & Wösten, H. Canal blocking strategies for hydrological restoration of degraded tropical peatlands in Central Kalimantan, Indonesia. Catena 114, 11–20 (2014).

  • 13.

    Whittle, A. & Gallego-Sala, A. V. Vulnerability of the peatland carbon sink to sea-level rise. Sci. Rep. 6, 28758 (2016).

    Article  Google Scholar 

  • 14.

    Wijedasa, L. S. et al. Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences. Glob. Change Biol. 23, 977–982 (2017).

  • 15.

    Carlson, K. M., Goodman, L. K. & May-Tobin, C. C. Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. Environ. Res. Lett. 10, 074006 (2015).

    Article  Google Scholar 

  • 16.

    Bürgmann, R., Rosen, P. A. & Fielding, E. J. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 28, 169–209 (2000).

    Article  Google Scholar 

  • 17.

    Chaussard, E., Amelung, F., Abidin, H. & Hong, S.-H. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ. 128, 150–161 (2013).

    Article  Google Scholar 

  • 18.

    Chaussard, E. et al. Interseismic coupling and refined earthquake potential on the Hayward-Calaveras fault zone. J. Geophys. Res. Solid Earth 120, 8570–8590 (2015).

    Article  Google Scholar 

  • 19.

    Massonnet, D. et al. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364, 138–142 (1993).

    Article  Google Scholar 

  • 20.

    Fialko, Y. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature 441, 968–971 (2006).

    Article  Google Scholar 

  • 21.

    Pritchard, M. E. & Simons, M. An InSAR-based survey of volcanic deformation in the southern Andes. Geochem. Geophys. Geosyst. 5, L15610 (2004).

  • 22.

    Cuenca, M. C. & Hanssen, R. Subsidence due to peat decomposition in the Netherlands: kinematic observations from radar interferometry. In Fifth International Workshop on ERS/Envisat SAR Interferometry, ‘FRINGE07’ 1–6 (2008).

  • 23.

    Cigna, F., Sowter, A., Jordan, C. J. & Rawlins, B. G. Intermittent Small Baseline Subset (ISBAS) monitoring of land covers unfavourable for conventional C-band InSAR: proof-of-concept for peatland environments in North Wales, UK. Proc. SPIE 9243, 924305 (2014).

    Article  Google Scholar 

  • 24.

    Marshall, C. et al. Monitoring tropical peat related settlement using ISBAS InSAR, Kuala Lumpur International Airport (KLIA). Eng. Geol. 244, 57–65 (2018).

    Article  Google Scholar 

  • 25.

    Zhou, Z. The Applications of InSAR Time Series Analysis for Monitoring Long-Term Surface Change in Peatlands. PhD thesis, Univ. Glasgow (2013).

  • 26.

    Chaussard, E. et al. Potential for larger earthquakes in the East San Francisco Bay Area due to the direct connection between the Hayward and Calaveras Faults. Geophys. Res. Lett. 42, 2734–2741 (2015).

    Article  Google Scholar 

  • 27.

    Berardino, P., Fornaro, G., Lanari, R. & Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 40, 2375–2383 (2002).

  • 28.

    Khasanah, N. & van Noordwijk, M. Subsidence and carbon dioxide emissions in a smallholder peatland mosaic in Sumatra, Indonesia. Mitig. Adapt. Strateg. Glob. Change 24, 147–163 (2019).

  • 29.

    Ishikura, K. et al. Soil carbon dioxide emissions due to oxidative peat decomposition in an oil palm plantation on tropical peat. Agric. Ecosyst. Environ. 254, 202–212 (2018).

    Article  Google Scholar 

  • 30.

    Maswar, M. Kajian Cadangan Karbon pada Lahan Gambut Tropika Yang Didrainase Untuk Tanaman Tahunan (Carbon Stock in the Drained Tropical Peat Used for Perennial Plantation Crops). PhD dissertation, Bogor Agricultural Univ. (2011).

  • 31.

    Hooijer, A. et al. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7, 1505–1514 (2010).

    Article  Google Scholar 

  • 32.

    Hirano, T., Jauhiainen, J., Inoue, T. & Takahashi, H. Controls on the carbon balance of tropical peatlands. Ecosystems 12, 873–887 (2009).

    Article  Google Scholar 

  • 33.

    Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. & Vasander, H. Heterotrophic respiration in drained tropical peat is greatly affected by temperature—a passive ecosystem cooling experiment. Environ. Res. Lett. 9, 105013 (2014).

  • 34.

    Hoyt, A. M. et al. CO2 emissions from an undrained tropical peatland: interacting influences of temperature, shading and water table depth. Glob. Change Biol. 25, 2885–2899 (2019).

  • 35.

    Cobb, A. R. et al. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proc. Natl Acad. Sci. USA 114, E5187–E5196 (2017).

    Google Scholar 

  • 36.

    Moore, S. et al. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493, 660–663 (2013).

    Article  Google Scholar 

  • 37.

    Chaussard, E. & Amelung, F. C. Characterization of geological hazards using globally observing spaceborne SAR. Photogramm. Eng. Remote Sens. 79, 982–986 (2013).

    Google Scholar 

  • 38.

    Chen, C. W. & Zebker, H. A. Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models. IEEE Trans. Geosci. Remote Sens. 40, 1709–1719 (2002).

    Article  Google Scholar 

  • 39.

    Elliott, J. R., Biggs, J., Parsons, B. & Wright, T. J. InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophys. Res. Lett. 35, L12309 (2008).

  • 40.

    Chaussard, E., Johnson, C. W., Fattahi, H. & Burgmann, R. Potential and limits of InSAR to characterize interseismic deformation independently of GPS data: application to the southern San Andreas Fault system. Geochem. Geophys. Geosyst. 17, 1214–1229 (2016).

  • 41.

    Fattahi, H. & Amelung, F. DEM error correction in InSAR time series. IEEE Trans. Geosci. Remote Sens. 51, 4249–4259 (2013).

    Article  Google Scholar 

  • 42.

    Chaussard, E., Amelung, F. & Aoki, Y. Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series. J. Geophys. Res. Solid Earth 118, 3957–3969 (2013).

    Article  Google Scholar 

  • 43.

    Zwieback, S., Hensley, S. & Hajnsek, I. Assessment of soil moisture effects on L-band radar interferometry. Remote Sens. Environ. 164, 77–89 (2015).

    Article  Google Scholar 

  • 44.

    Scott, C. P., Lohman, R. B. & Jordan, T. E. InSAR constraints on soil moisture evolution after the March 2015 extreme precipitation event in Chile. Sci. Rep. 7, 4903 (2017).

  • 45.

    De Zan, F., Zonno, M. & Lopez-Dekker, P. Phase inconsistencies and multiple scattering in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 53, 6608–6616 (2015).

    Article  Google Scholar 

  • 46.

    Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002).

    Article  Google Scholar 

  • 47.

    Miettinen, J., Shi, C., Tan, W. J. & Liew, S. C. 2010 land cover map of insular Southeast Asia in 250-m spatial resolution. Remote Sens. Lett. 3, 11–20 (2012).

    Article  Google Scholar 

  • 48.

    Miettinen, J. et al. Historical Analysis and Projection of Oil Palm Plantation Expansion on Peatland in Southeast Asia (International Council on Clean Transportation, 2012).

  • 49.

    van den Akker, J. J. H. et al. Emission of CO2 from agricultural peat soils in the Netherlands and ways to limit this emission. In Proc. 13th International Peat Congress ‘After Wise Use—the Future of Peatlands, Vol. 1 Oral Presentations (eds Farrell, C. & Feehan, J.) 645–648 (International Peat Society, 2008).

  • 50.

    van den Wyngaert, I. J. I., Kramer, H., Kuikman, P. & Lesschen, J. P. Greenhouse Gas Reporting of the LULUCF Sector, Revisions and Updates Related to the Dutch NIR 2009 Alterra Report 1035-7 (Alterra, 2009).

  • 51.

    Leifeld, J., Müller, M. & Fuhrer, J. Peatland subsidence and carbon loss from drained temperate fens. Soil Use Manag. 27, 170–176 (2011).

    Article  Google Scholar 

  • 52.

    Driessen, P. M. & Rochimah, L. The Physical Properties of Lowland Peats from Kalimantan (Indonesia) 56–73 (Soil Research Institute, 1976).

  • 53.

    Diemont, W. H. & Supardi, M. N. N. Accumulation of organic matter and inorganic constituents in a peat dome in Sumatra, Indonesia. In International Peat Society Symposium on Tropical Peat and Peatlands for Development 698–708 (1987).

  • 54.

    Cameron, C. C., Esterle, J. S. & Palmer, C. A. The geology, botany and chemistry of selected peat-forming environments from temperate and tropical latitudes. Int. J. Coal Geol. 12, 105–156 (1989).

  • 55.

    Neuzil, S. G. Onset and rate of peat and carbon accumulation in four domed ombrogenous peat deposits, Indonesia. In Biodiversity and Sustainability of Tropical Peatlands (eds Rieley, J. O. & Page, S. E.) 55–72 (Samara, 1997).

  • 56.

    Page, S. E. et al. A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J. Quat. Sci. 19, 625–635 (2004).

    Article  Google Scholar 

  • 57.

    Sumawinata, B., Mulyanto, B., Djajakirana, G. & Pulunggono, H. B. Some considerations of tropical peat for energy. In Carbon-Climate-Human Interaction on Tropical Peatland: Proc. International Symposium and Workshop on Tropical Peatland (2007).


  • Source: Ecology - nature.com

    Structural and functional shifts of soil prokaryotic community due to Eucalyptus plantation and rotation phase

    Peatland drainage in Southeast Asia adds to climate change