in

Wireworm (Coleoptera: Elateridae) genomic analysis reveals putative cryptic species, population structure, and adaptation to pest control

  • 1.

    Traugott, M., Benefer, C. M., Blackshaw, R. P., van Herk, W. G. & Vernon, R. S. Biology, ecology, and control of elaterid beetles in agricultural land. Annu. Rev. Entomol. 60, 313–334 (2015).

    CAS  PubMed  Google Scholar 

  • 2.

    Knodel, J. J. & Shrestha, G. Pulse crops: pest management of wireworms and cutworms in the Northern Great Plains of United States and Canada. Ann. Entomological Soc. Am. 111, 195–204 (2018).

    Google Scholar 

  • 3.

    Vernon, R. S. et al. Transitional sublethal and lethal effects of insecticides after dermal exposures to five economic species of wireworms (Coleoptera: Elateridae). J. Economic Entomol. 101, 365–374 (2008).

    CAS  Google Scholar 

  • 4.

    Reddy, G. V. P. & Tangtrakulwanich, K. Potential application of pheromones in monitoring, mating disruption, and control of click beetles (Coleoptera: Elateridae). ISRN Entomol. 2014, 1–8 (2014).

    Google Scholar 

  • 5.

    Morales-Rodriguez, A. & Wanner, K. W. Efficacy of thiamethoxam and fipronil, applied alone and in combination, to control Limonius californicus and Hypnoidus bicolor (Coleoptera: Elateridae). Pest Manag. Sci. 71, 584–591 (2015).

    CAS  PubMed  Google Scholar 

  • 6.

    van Herk, W. G., Vernon, R. S., Tolman, J. H. & Saavedra, H. O. Mortality of a wireworm, Agriotes obscurus (Coleoptera: Elateridae), after topical application of various insecticides. J. Economic Entomol. 101, 375–383 (2008).

    Google Scholar 

  • 7.

    Vernon, R. S., Van Herk, W. G., Clodius, M. & Harding, C. Wireworm management I: stand protection versus wireworm mortality with wheat seed treatments. J. Economic Entomol. 102, 2126–2136 (2009).

    CAS  Google Scholar 

  • 8.

    Vernon, R. S., Van Herk, W. G., Clodius, M. & Harding, C. Further studies on wireworm management in Canada: damage protection versus wireworm mortality in potatoes. J. Economic Entomol. 106, 786–799 (2013).

    CAS  Google Scholar 

  • 9.

    van Herk, W. G. et al. Contact behaviour and mortality of wireworms exposed to six classes of insecticide applied to wheat seed. J. Pest Sci. 88, 717–739 (2015).

    Google Scholar 

  • 10.

    van Herk, W. G., Labun, T. J. & Vernon, R. S. Efficacy of diamide, neonicotinoid, pyrethroid, and phenyl pyrazole insecticide seed treatments for controlling the sugar beet wireworm, Limonius californicus (Coleoptera: Elateridae), in spring wheat. J. Entomological Soc. Br. Columbia 115, 86–100 (2019).

    Google Scholar 

  • 11.

    Ensafi, P. et al. Soil type mediates the effectiveness of biological control against Limonius californicus (Coleoptera: Elateridae). J. Economic Entomol. 111, 2053–2058 (2018).

    CAS  Google Scholar 

  • 12.

    Stern, V. M. S. R., van den Bosch, R. & Hagen, K. S. The integrated control concept. Hilgardia 29, 81–101 (1959).

    CAS  Google Scholar 

  • 13.

    Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215 (2015).

    Google Scholar 

  • 14.

    Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B-Biol. Sci. 270, 313–321 (2003).

    CAS  Google Scholar 

  • 15.

    Zhang, S. K. et al. DNA barcoding identification and genetic diversity of bamboo shoot wireworms (Coleoptera: Elateridae) in South China. J. Asia-Pac. Entomol. 22, 140–150 (2019).

    Google Scholar 

  • 16.

    Ellis, J. S., Blackshaw, R., Parker, W., Hicks, H. & Knight, M. E. Genetic identification of morphologically cryptic agricultural pests. Agric. For. Entomol. 11, 115–121 (2009).

    Google Scholar 

  • 17.

    Benefer, C. M. et al. The molecular identification and genetic diversity of economically important wireworm species (Coleoptera: Elateridae) in Canada. J. Pest Sci. 86, 19–27 (2013).

    Google Scholar 

  • 18.

    Etzler, F. E., Wanner, K. W., Morales-Rodriguez, A. & Ivie, M. A. DNA barcoding to improve the species-level management of wireworms (Coleoptera: Elateridae). J. Economic Entomol. 107, 1476–1485 (2014).

    Google Scholar 

  • 19.

    Lindroth, E. & Clark, T. L. Phylogenetic analysis of an economically important species complex of wireworms (Coleoptera: Elateridae) in the midwest. J. Economic Entomol. 102, 743–749 (2009).

    CAS  Google Scholar 

  • 20.

    Allendorf, F. W. Genetics and the conservation of natural populations: allozymes to genomes. Mol. Ecol. 26, 420–430 (2017).

    CAS  PubMed  Google Scholar 

  • 21.

    Savolainen, O., Lascoux, M. & Merila, J. Ecological genomics of local adaptation. Nat. Rev. Genet. 14, 807–820 (2013).

    CAS  PubMed  Google Scholar 

  • 22.

    Rashed, A., Etzler, F., Rogers, C. W. & Marshall, J. M. Wireworms in Idaho Cereals: Monitoring and Identification 898 (University of Idaho Extension Bulletin, 2015).

  • 23.

    Milosavljevic I., Esser A. D. & Crowder D. W. Identifying Wireworms in Cereal Crops FS175E (Washington State University Extension, 2015).

  • 24.

    Stone, M. W. Life History of the Sugar-beet Wireworm in Southern California. Tech. Bull. No. 744 (1941).

  • 25.

    Andrews, K., Good, J., Miller, M., Luikart, G. & Hohenlohe, P. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17, 81–92 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Coissac, E., Hollingsworth, P. M., Lavergne, S. & Taberlet, P. From barcodes to genomes: extending the concept of DNA barcoding. Mol. Ecol. 25, 1423–1428 (2016).

    CAS  PubMed  Google Scholar 

  • 27.

    Miller, J. M., Malenfant, R. M., Moore, S. S. & Coltman, D. W. Short reads, circular genome: Skimming SOLiD sequence to construct the bighorn sheep mitochondrial genome. J. Heredity 103, 140–146 (2012).

    CAS  Google Scholar 

  • 28.

    McVean, G. A genealogical interpretation of principal components analysis. PLoS Genet. 5, e1000686 (2009).

  • 29.

    Wang, J. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet. Res. 89, 135–153 (2007).

    CAS  PubMed  Google Scholar 

  • 30.

    Papadopoulou, A., Anastasiou, I. & Vogler, A. P. Revisiting the insect mitochondrial molecular clock: The mid-Aegean trench calibration. Mol. Biol. Evolution 27, 1659–1672 (2010).

    CAS  Google Scholar 

  • 31.

    Hebert, P. D. N., Ratnasingham, S. & deWaard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. B-Biol. Sci. 270, S96–S99, (2003).

    CAS  Google Scholar 

  • 32.

    Huemer, P. et al. Large geographic distance versus small DNA barcode divergence: insights from a comparison of European to South Siberian Lepidoptera. PLoS One 13, e0206668 (2018).

  • 33.

    Sun, S. E. et al. DNA barcoding reveal patterns of species diversity among northwestern Pacific molluscs. Sci. Rep. 6, 33367 (2016).

  • 34.

    Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. & Hebert, P. D. N. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B-Biol. Sci. 360, 1847–1857 (2005).

    CAS  Google Scholar 

  • 35.

    Brunsfeld, S. J., Sullivan, J., Soltis, D. E. & Soltis, P. S. in Integrating Ecological and Evolutionary Processes in A Spatial Context Vol. 14 (eds Silvertown, J. & Antonovics, J.) 319–339 (Blackwell Science, Oxford, 2001).

  • 36.

    Rankin, A. M. et al. Complex interplay of ancient vicariance and recent patterns of geographical speciation in north-western North American temperate rainforests explains the phylogeny of jumping slugs (Hemphillia spp.). Biol. J. Linn. Soc. 127, 876–889 (2019).

    Google Scholar 

  • 37.

    Maroja, L. S., Bogdanowicz, S. M., Wallin, K. F., Raffa, K. F. & Harrison, R. G. Phylogeography of spruce beetles (Dendroctonus rufipennis Kirby) (Curculionidae: Scolytinae) in north america. Mol. Ecol. 16, 2560–2573 (2007).

    CAS  PubMed  Google Scholar 

  • 38.

    Arakaki, N., Hokama, Y. & Yamamura, K. Estimation of the dispersal ability of Melanotus okinawensis (Coleoptera: Elateridae) larvae in soil. Appl. Entomol. Zool. 45, 297–302 (2010).

    Google Scholar 

  • 39.

    Schallhart, N., Tusch, M. J., Staudacher, K., Wallinger, C. & Traugott, M. Stable isotope analysis reveals whether soil-living elaterid larvae move between agricultural crops. Soil Biol. Biochem. 43, 1612–1614 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Arakaki, N. et al. Estimation of abundance and dispersal distance of the sugarcane click beetle Melanotus sakishimensis Ohira (Coleoptera: Elateridae) on Kurima Island, Okinawa, by mark-recapture experiments. Appl. Entomol. Zool. 43, 409–419 (2008).

    Google Scholar 

  • 41.

    Schallhart, N., Wallinger, C., Juen, A. & Traugott, M. Dispersal abilities of adult click beetles in arable land revealed by analysis of carbon stable isotopes. Agric. For. Entomol. 11, 333–339 (2009).

    Google Scholar 

  • 42.

    Blackshaw, R. P., Vernon, R. S. & Thiebaud, F. Large scale Agriotes spp. click beetle (Coleoptera: Elateridae) invasion of crop land from field margin reservoirs. Agric. For. Entomol. 20, 51–61 (2018).

    Google Scholar 

  • 43.

    Hicks, H. & Blackshaw, R. P. Differential responses of three Agriotes click beetle species to pheromone traps. Agric. For. Entomol. 10, 443–448 (2008).

    Google Scholar 

  • 44.

    Rondon, S. I., Pantoja, A., Hagerty, A. & Horneck, D. A. Ground beelte (Coleoptera: Carabidae) populations in commercial organic and conventional potato production. Fla. Entomologist 96, 1492–1499 (2013).

    Google Scholar 

  • 45.

    Horton, D. R. & Landolt, P. J. Use of Japanese-beetle traps to monitor flight of the Pacific coast wireworm, Limonius canus (Coleoptera: Elateridae), and effects of trap height and color. J. Entomological Soc. Br. Columbia 98, 235–242 (2001).

    Google Scholar 

  • 46.

    Balkenhol, N., Cushman, S. A., Storfer, A. & Waits, L. P. Landscape Genetics—Concepts, Methods, Applications (John Wiley & Sons Ltd, West Sussex, 2016).

  • 47.

    Milosavljevic, I., Esser, A. D. & Crowder, D. W. Seasonal population dynamics of wireworms in wheat crops in the Pacific Northwestern United States. J. Pest Sci. 90, 77–86 (2017).

    Google Scholar 

  • 48.

    Gerritsen, A. T. et al. Full mitochondrial genome sequence of the sugar beet wireworm Limonius californicus (Coleoptera: Elateridae), a common agricultural pest. Microbiology Resource Announcements 4 (2016).

  • 49.

    Voskoboynik, A. et al. The genome sequence of the colonial chordate, Botryllus schlosseri. Elife 2, e00569 (2013).

  • 50.

    McCoy, R. C. et al. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLoS ONE 9, e106689 (2014).

  • 51.

    Marzachi, C., Veratti, F. & Bosco, D. Direct PCR detection of phytoplasmas in experimentally infected insects. Ann. Appl. Biol. 133, 45–54 (1998).

    CAS  Google Scholar 

  • 52.

    Ali, O. A. et al. RAD Capture (Rapture): flexible and efficient sequence-based genotyping. Genetics 202, 389–400 (2016).

    CAS  PubMed  Google Scholar 

  • 53.

    Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2015).

  • 54.

    Zimin, A. V. et al. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 27, 787–792 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    PubMed  Google Scholar 

  • 56.

    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv https://doi.org/10.1101/201178 (2017).

  • 59.

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

  • 60.

    Frichot, E. & Francois, O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evolution 6, 925–929 (2015).

    Google Scholar 

  • 61.

    R_Core_Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, 2018).

  • 62.

    Excoffier, L., Laval, L. G. & Schneider, S. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolut. Bioinforma. Online 1, 47–50 (2005).

    CAS  Google Scholar 

  • 63.

    Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Wang, J. L. COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145 (2011).

    PubMed  Google Scholar 

  • 65.

    Whitlock, M. C. & Lotterhos, K. E. Reliable detection of loci responsible for local adaptation: Inference of a null model through trimming the distribution of FST. Am. Naturalist 186, S24–S36 (2015).

    Google Scholar 

  • 66.

    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 67.

    Beaumont, M. A. & Nichols, R. A. Evaluating loci for use in the genetic analysis of population structure. Proc. R. Soc. Ser. B, Biol. Sci. 263, 1619–1626 (1996).

    Google Scholar 

  • 68.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 70.

    Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

  • 71.

    Darriba, D., Taboada, G., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 72.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Environmental stability impacts the differential sensitivity of marine microbiomes to increases in temperature and acidity

    Discovering the indigenous microbial communities associated with the natural fermentation of sap from the cider gum Eucalyptus gunnii