in

Within-season movements of Alpine songbird distributions are driven by fine-scale environmental characteristics

  • 1.

    Engler, J. O. et al. Avian SDMs: current state, challenges, and opportunities. J. Avian Biol. 48, 1483–1504 (2017).

    • Article
    • Google Scholar
  • 2.

    Rodríguez, J. P., Brotons, L., Bustamante, J. & Seoane, J. The application of predictive modelling of species distribution to biodiversity conservation. Divers. Distrib. 13, 243–251 (2007).

    • Article
    • Google Scholar
  • 3.

    Brambilla, M. & Rubolini, D. Intra‐seasonal changes in distribution and habitat associations of a multi-brooded bird species: implications for conservation planning. Anim. Conserv. 12, 71–77 (2009).

    • Article
    • Google Scholar
  • 4.

    Brambilla, M. & Pedrini, P. Intra-seasonal changes in local pattern of Corncrake Crex crex occurrence require adaptive conservation strategies in Alpine meadows. Bird Conserv. Int. 21, 388–393 (2011).

    • Article
    • Google Scholar
  • 5.

    Brambilla, M., Falco, R. & Negri, I. A spatially explicit assessment of within-season changes in environm ental suitability for farmland birds along an altitudinal gradient. Anim. Conserv. 15, 638–647 (2012).

    • Article
    • Google Scholar
  • 6.

    McClure, C. J. & Hill, G. E. Dynamic versus static occupancy: How stable are habitat associations through a breeding season? Ecosphere 3, 1–13 (2012).

    • Article
    • Google Scholar
  • 7.

    Gow, E. A. & Stutchbury, B. J. Within-season nesting dispersal and molt dispersal are linked to habitat shifts in a Neotropical migratory songbird. Wilson J. Ornithol. 125, 696–708 (2013).

    • Article
    • Google Scholar
  • 8.

    Frey, S. J., Hadley, A. S. & Betts, M. G. Microclimate predicts within-season distribution dynamics of montane forest birds. Divers. Distrib. 22, 944–959 (2016).

    • Article
    • Google Scholar
  • 9.

    Herse, M. R., Estey, M. E., Moore, P. J., Sandercock, B. K. & Boyle, W. A. Landscape context drives breeding habitat selection by an enigmatic grassland bird. Landscape Ecol. 32, 2351–2364 (2017).

    • Article
    • Google Scholar
  • 10.

    Williams, E. J. & Boyle, W. A. Patterns and correlates of within-season breeding dispersal: A common strategy in a declining grassland songbird. Auk 135, 1–14 (2017).

    • Article
    • Google Scholar
  • 11.

    Klemp, S. Altitudinal dispersal within the breeding season in the Grey Wagtail Motacilla cinerea. Ibis 145, 509–511 (2003).

    • Article
    • Google Scholar
  • 12.

    Vatka, E., Orell, M. & Rytkönen, S. Warming climate advances breeding and improves synchrony of food demand and food availability in a boreal passerine. Global Change Biol. 17, 3002–3009 (2011).

  • 13.

    Marshall, M. R. & Cooper, R. J. Territory size of a migratory songbird in response to caterpillar density and foliage structure. Ecology 85, 432–445 (2004).

    • Article
    • Google Scholar
  • 14.

    Betts, M. G., Rodenhouse, N. L., Scott Sillett, T., Doran, P. J. & Holmes, R. T. Dynamic occupancy models reveal within‐breeding season movement up a habitat quality gradient by a migratory songbird. Ecography 31, 592–600 (2008).

    • Article
    • Google Scholar
  • 15.

    Gilroy, J. J., Anderson, G. Q. A., Grice, P. V., Vickery, J. A. & Sutherland, W. J. Mid-season shifts in the habitat associations of Yellow Wagtails Motacilla flava breeding in arable farmland. Ibis 152, 90–104 (2010).

    • Article
    • Google Scholar
  • 16.

    Kempenaers, B. & Valcu, M. Breeding site sampling across the Arctic by individual males of a polygynous shorebird. Nature 541, 528 (2017).

  • 17.

    Dale, S., Lunde, A. & Steifetten, Ø. Longer breeding dispersal than natal dispersal in the ortolan bunting. Behav. Ecol. 16, 20–24 (2004).

    • Article
    • Google Scholar
  • 18.

    MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).

    • Article
    • Google Scholar
  • 19.

    MacKenzie, D. I. et al. Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence (Elsevier, 2006).

  • 20.

    Beniston, M. Mountain climates and climatic change: an overview of processes focusing on the European Alps. Pure Appl. Geophys. 162, 1587–1606 (2005).

  • 21.

    Jonas, T., Rixen, C., Sturm, M. & Stoeckli, V. How alpine plant growth is linked to snow cover and climate variability. J. Geophys. Res. Biogeosci. 113, G3 (2008).

    • Article
    • Google Scholar
  • 22.

    Pellerin, M., Delestrade, A., Mathieu, G., Rigault, O. & Yoccoz, N. G. Spring tree phenology in the Alps: effects of air temperature, altitude and local topography. Eur. J. Forest Res. 131, 1957–1965 (2012).

    • Article
    • Google Scholar
  • 23.

    Cornelius, C., Estrella, N., Franz, H. & Menzel, A. Linking altitudinal gradients and temperature responses of plant phenology in the Bavarian Alps. Plant Biol. 15, 57–69 (2013).

  • 24.

    Leingärtner, A., Krauss, J. & Steffan-Dewenter, I. Elevation and experimental snowmelt manipulation affect emergence phenology and abundance of soil-hibernating arthropods. Ecol. Entomol. 39, 412–418 (2014).

    • Article
    • Google Scholar
  • 25.

    Boyle, W. A. Altitudinal bird migration in North America. Auk 134, 443–465 (2017).

    • Article
    • Google Scholar
  • 26.

    Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc. Natl. Acad. Sci. USA 106, 3835–3840 (2009).

  • 27.

    Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).

    • Article
    • Google Scholar
  • 28.

    Chamberlain, D. E., Pedrini, P., Brambilla, M., Rolando, A. & Girardello, M. Identifying key conservation threats to Alpine birds through expert knowledge. PeerJ 4, e1723 (2016).

  • 29.

    Scridel, D. et al. A review and meta‐analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis 160, 489–515 (2018).

    • Article
    • Google Scholar
  • 30.

    Maphisa, D. H., Smit-Robinson, H. & Altwegg, R. Dynamic multi-species occupancy models reveal individualistic habitat preferences in a high-altitude grassland bird community. PeerJ 7, e6276 (2019).

  • 31.

    Lehikoinen, A. et al. Declining population trends of European mountain birds. Global Change Biol. 25, 577–588 (2018).

  • 32.

    MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G. & Franklin, A. B. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207 (2003).

    • Article
    • Google Scholar
  • 33.

    Tyler, S. Water Pipit (Anthus spinoletta). In: del Hoyo, J. et al. (eds.). Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona (retrieved from, https://www.hbw.com/node/57804 on 30 January 2019).

  • 34.

    Brichetti, P. & Fracasso, G. Ornitologia italiana, Vol. 4 – Apodidae-Prunellidae (Oasi Alberto Perdisa Editore, Bologna, 2007).

  • 35.

    Brichetti, P. & Fracasso, G. Ornitologia italiana, Vol. 5 – Turdidae-Cisticolidae (Oasi Alberto Perdisa Editore, Bologna, 2008).

  • 36.

    Collar, N. European Robin (Erithacus rubecula). In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. (eds.). Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona (retrieved from, https://www.hbw.com/node/58467 on 30 January 2019).

  • 37.

    Gosler, A. & Clement, P. Coal Tit (Periparus ater). In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. (eds.). Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona (retrieved from, https://www.hbw.com/node/59874 on 30 January 2019).

  • 38.

    Hatchwell, B. Dunnock (Prunella modularis). In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. (eds.).Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona (retrieved from, https://www.hbw.com/node/58221 on 30 January 2019).

  • 39.

    Burnham, K. P. & D. R. Anderson. Model selection and multi-model inference. Second edition (Springer-Verlag, New York, USA, 2002).

  • 40.

    MacKenzie, D. I. & Bailey, L. L. Assessing the fit of site-occupancy models. J. Agric. Biol. Environ. Stat. 9, 300–318 (2004).

    • Article
    • Google Scholar
  • 41.

    Brambilla, M., Martino, G. & Pedrini, P. Changes in song thrush Turdus philomelos density and habitat association in apple orchards during the breeding season. Ardeola 60, 73–83 (2013).

    • Article
    • Google Scholar
  • 42.

    Hoover, J. P. Decision rules for site fidelity in a migratory bird, the prothonotary warbler. Ecology 84, 416–430 (2003).

    • Article
    • Google Scholar
  • 43.

    Stamps, J. A. The silver spoon effect and habitat selection by natal disperser. Ecol. Lett. 9, 1179–1185 (2006).

  • 44.

    Gnetti, V. et al. Temporal dynamic of a ground beetle community of Eastern Alps. Bull. Insectology 68, 299–309 (2015).

    • Google Scholar
  • 45.

    Hochachka, W. Seasonal decline in reproductive performance of song sparrows. Ecology 71, 1279–1288 (1990).

    • Article
    • Google Scholar
  • 46.

    Verhulst, S. & Timbergen, J. M. Experimental evidence for a causal relationship between timing and success of reproduction in the great tit Parus M. Major. J. Anim. Ecol. 60, 269–282 (1991).

    • Article
    • Google Scholar
  • 47.

    Nilsson, J.-Å. Establishment success of experimentally delayed juvenile marsh tits Parus Palustris. Ethology 85, 73–79 (1990).

    • Article
    • Google Scholar
  • 48.

    Koivula, K., Lahti, K., Orell, M. & Rytkönen, S. Prior residency as a key determinant of social dominance in the willow tit (Parus montanus). Behav. Ecol. Sociobiol. 33, 283–287 (1993).

    • Article
    • Google Scholar
  • 49.

    Chamberlain, D. E., Brambilla, M., Caprio, E., Pedrini, P. & Rolando, A. Alpine bird distributions along elevation gradients: the consistency of climate and habitat effects across geographic regions. Oecologia 181, 1139–1150 (2016).

  • 50.

    Brambilla, M. & Pedrini, P. Modelling at the edge: habitat types driving the occurrence of common forest bird species at the altitudinal margin of their range. Ornis Fenn. 93, 88–99 (2016).

    • Google Scholar
  • 51.

    Jähnig, S. et al. The contribution of broadscale and finescale habitat structure to the distribution and diversity of birds in an Alpine forest-shrub ecotone. J. Ornithol. 159, 747–759 (2018).

    • Article
    • Google Scholar
  • 52.

    Öberg, M. et al. Rainfall during parental care reduces reproductive and survival components of fitness in a passerine bird. Ecol. Evol. 5, 345–356 (2014).

  • 53.

    Frey-Roos, F., Brodmann, P. A. & Reyer, H. U. Relationship between food resources, foraging patterns, and reproductive success in the water pipit, Anthus sp. Spinoletta. Behav. Ecol. 6, 287–295 (1995).

    • Article
    • Google Scholar
  • 54.

    Davies, N. B. & Hartley, I. R. Food patchiness, territory overlap and social systems: an experiment with dunnocks Prunella Modularis. J. Anim. Ecol. 65, 837–846 (1996).

    • Article
    • Google Scholar
  • 55.

    Storch, D. Densities and territory sizes of birds in two different lowland communities in eastern Bohemia. Folia Zool. 47, 181–188 (1998).

    • Google Scholar
  • 56.

    Tobias, J. & Seddon, N. Territoriality as a paternity guard in the European robin, Erithacus rubecula. Anim. Behav. 60, 165–173 (2000).

  • 57.

    Chandler, R. B., Royle, J. A. & King, D. I. Inference about density and temporary emigration in unmarked populations. Ecology 92, 1429–1435 (2011).

  • 58.

    Spina, F. & Volponi, S. Atlante della Migrazione degli Uccelli in Italia 2. Passeriformi [Italian bird migration atlas]. Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Istituto Superiore per la Protezione e la Ricerca Ambientale, Tipografia SCR–Roma, 632 (2008).

  • 59.

    Boyle, W. A. & Martin, K. The conservation value of high elevation habitats to North American migrant birds. Biol. Conserv. 192, 461–476 (2015).

    • Article
    • Google Scholar
  • 60.

    Gomez, J. P., Robinson, S. K., Blackburn, J. K. & Ponciano, J. M. An efficient extension of N-mixture models for multi-species abundance estimation. Methods Ecol. Evol. 9, 340–353 (2018).

  • 61.

    Bötsch, Y., Tablado, Z. & Jenni, L. Experimental evidence of human recreational disturbance effects on bird-territory establishment. Proc. R. Soc. B 284, 20170846 (2017).

  • 62.

    Formenti, N. et al. Increased hormonal stress reactions induced in an alpine black grouse (Tetrao tetrix) population by winter sports. J. Ornithol. 156, 317–321 (2015).

    • Article
    • Google Scholar
  • 63.

    Coppes, J., Ehrlacher, J., Thiel, D., Suchant, R. & Braunisch, V. Outdoor recreation causes effective habitat reduction in capercaillie Tetrao urogallus: a major threat for geographically restricted populations. J. Avian Biol. 48, 1583–1594 (2017).

    • Article
    • Google Scholar
  • 64.

    Provincia Autonoma di Bolzano. Tipologie forestali dell’Alto Adige (Ripartizione per le foreste, Provincia Autonoma di Bolzano-Alto Adige, 2010).

  • 65.

    Adler, S. et al. Il clima del Tirolo – Alto Adige – Bellunese (Zentralanstalt fur Meteorologie und Geodynamik, Ripartizione Protezione antincendi e civile – Provincia Autonoma di Bolzano, Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto, 2015).

  • 66.

    Hines, J. E. PRESENCE – Software to estimate patch occupancy and related parameters. USGS-PWRC (2006).

  • 67.

    Del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E. (eds.). Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona (retrieved from, https://www.hbw.com/node/58221 on 30 January 2019).

  • 68.

    Chamberlain, D. E., Negro, M., Caprio, E. & Rolando, A. Assessing the sensitivity of alpine birds to potential future changes in habitat and climate to inform management strategies. Biol. Conserv. 167, 127–135 (2013).

    • Article
    • Google Scholar
  • 69.

    Stralberg, D. et al. Re-shuffling of species with climate disruption: a no-analog future for California birds? PLoS One 4, e6825 (2008).

  • 70.

    Virkkala, R., Heikkinen, R. K., Leikola, N. & Luoto, M. Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biol. Conserv. 141, 1343–1353 (2008).

    • Article
    • Google Scholar
  • 71.

    MacKenzie, D. I. PRESENCE User Manual (Proteus Wildlife Research Consultant, Dunedin, New Zealand, 2012).

  • 72.

    Moore, J. E. & Swihart, R. K. Modeling patch occupancy by forest rodents: incorporating detectability and spatial autocorrelation with hierarchically structured data. J. Wild. Manag. 69, 933–949 (2005).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Author Correction: Simulation-based reconstruction of global bird migration over the past 50,000 years

    Functional identity enhances aboveground productivity of a coastal saline meadow mediated by Tamarix chinensis in Laizhou Bay, China