in

Woody litter protects peat carbon stocks during drought

  • 1.

    Gorham, E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1, 182–195 (1991).

    • Article
    • Google Scholar
  • 2.

    Limpens, J. et al. Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences 5, 1475–1491 (2008).

  • 3.

    Holden, J. Peatland hydrology and carbon release: why small-scale process matters. Phil. Trans. R. Soc. Lond. A 363, 2891–2913 (2005).

  • 4.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

  • 5.

    Depro, B. M., Murray, B. C., Alig, R. J. & Shanks, A. Public land, timber harvests, and climate mitigation: quantifying carbon sequestration potential on US public timberlands. Ecol. Manag. 255, 1122–1134 (2008).

    • Article
    • Google Scholar
  • 6.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

  • 7.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  • 8.

    Korner, C. Slow in, rapid out—carbon flux studies and Kyoto targets. Science 300, 1242–1243 (2003).

  • 9.

    Freeman, C., Ostle, N. & Kang, H. An enzymic latch on a global carbon store. Nature 409, 149 (2001).

  • 10.

    Laiho, R. Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol. Biochem. 38, 2011–2024 (2006).

  • 11.

    Fenner, N. & Freeman, C. Drought-induced carbon loss in peatlands. Nat. Geosci. 4, 895–900 (2011).

  • 12.

    Freeman, C., Fenner, N. & Shirsat, A. H. Peatland geoengineering: an alternative approach to terrestrial carbon sequestration. Phil. Trans. R. Soc. Lond. A 370, 4404–4421 (2012).

  • 13.

    Fenner, N., Freeman, C. & Reynolds, B. Hydrological effects on the diversity of phenolic degrading bacteria in a peatland: implications for carbon cycling. Soil Biol. Biochem. 37, 1277–1287 (2005).

  • 14.

    Wang, H., Richardson, C. J. & Ho, M. Dual controls on carbon loss during drought in peatlands. Nat. Clim. Change 5, 584–588 (2015).

  • 15.

    Aloui, F., Ayadi, N., Charrier, F. & Charrier, B. Durability of European oak (Quercus petraea and Quercus robur) against white rot fungi (Coriolus versicolor): relations with phenol extractives. Holz Roh Werkst. 62, 286–290 (2004).

  • 16.

    Bragazza, L. et al. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc. Natl Acad. Sci. USA 103, 119386–119389 (2006).

    • Article
    • Google Scholar
  • 17.

    Rasmussen, S., Wolff, C. & Rudolph, H. Compartmentalization of phenolic constituents in Sphagnum. Phytochemistry 38, 35–39 (1995).

  • 18.

    Painter, T. J. Lindow Man, Tollund Man and other peat-bog bodies: the preservative and antimicrobial action of sphagnan, a reactive glycuronoglycan with tanning and sequestering properties. Carbohydr. Polym. 15, 123–142 (1991).

  • 19.

    Guyette, R. P., Dey, D. C. & Stambaugh, M. C. The temporal distribution and carbon storage of large oak wood in streams and floodplain deposits. Ecosystems 11, 643–653 (2008).

  • 20.

    Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).

  • 21.

    Tian et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531, 225–228 (2016).

  • 22.

    Freeman, C. et al. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430, 195–198 (2004).

  • 23.

    Goslan, E. H. et al. A comparison of disinfection by-products found in chlorinated and chloraminated drinking waters in Scotland. Water Res. 43, 4698–4706 (2009).

  • 24.

    Freeman, C., Lock, M. A., Marxsen, J. & Jones, S. E. Inhibitory effects of high molecular weight dissolved organic matter upon metabolic processes of biofilms from contrasting rivers and streams. Freshw. Biol. 24, 159–166 (1990).

  • 25.

    Bonnett, S. A. F., Maltby, E. & Freeman, C. Hydrological legacy determines the type of enzyme inhibition in a peatlands chronosequence. Sci. Rep. 7, 9948 (2017).

  • 26.

    Bragazza, L., Parisod, J., Buttler, A. & Bardgett, R. D. Biogeochemical plant–soil microbe feedback in response to climate warming in peatlands. Nat. Clim. Change 3, 273–277 (2012).

  • 27.

    Dise, N. Environmental science. Peatland response to global change. Science 326, 810–811 (2009).

  • 28.

    Laiho et al. Scots pine litter decomposition along drainage succession and soil nutrient gradients in peatland forests, and the effects of inter-annual weather variation. Soil Biol. Biochem. 36, 1095–1109 (2004).

  • 29.

    Williams, C. J., Shingara, E. A. & Yavitt, J. B. Phenol oxidase activity in peatlands in New York State: response to summer drought. Wetlands 20, 416–421 (2000).

    • Article
    • Google Scholar
  • 30.

    Barthelmes, A., Couwenberg, J. & Joosten, H. Slight drainage may enhance peat carbon sequestration in alder carrs. In Proc. International Conference on Carbon in Peatlands (2010).

  • 31.

    Dai, J. & Mumper, R. J. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 7313–7352 (2010).

  • 32.

    Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 30, 3875–3883 (1991).

  • 33.

    Wetzel, R. G. Gradient-dominated ecosystems—sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229, 181–198 (1992).

  • 34.

    Dunn, C. & Freeman, C. The role of molecular weight in the enzyme-inhibiting effect of phenolics: the significance in peatland carbon sequestration. Ecol. Eng. 114, 162–166 (2018).

    • Article
    • Google Scholar
  • 35.

    Jones, D. L. & Kielland, K. Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biol. Biochem. 34, 209–219 (2002).

  • 36.

    Van Bodegom, P. M., Broekman, R., Van Dijk, J., Bakker, C. & Aerts, R. Ferrous iron stimulates phenol oxidase activity and organic matter decomposition in waterlogged wetlands. Biogeochem 76, 69–83 (2005).

  • 37.

    Wang, Y., Wang, H., He, J.-S. & Feng, X. Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nat. Commun. 8, 1–9 (2017).

  • 38.

    Charman, D. Peatlands and Environmental Change (Wiley, 2002).

  • 39.

    Wichtmann, W. & Joosten, H. Paludiculture: peat formation and renewable resources from rewetted peatlands. IMCG Newsl. 2007-3, 24–28 (2007).

    • Google Scholar
  • 40.

    Worrall, F., et al. A Review of Current Evidence on Carbon Fluxes and Greenhouse Gas Emissions from UK Peatland Report No. 442 (JNCC, 2011).

  • 41.

    Wichtmann, W. & Schäfer, A. in Wetlands: Monitoring, Modelling and Management (eds Okruszko, T. et al.) 223–279 (Taylor & Francis, 2007).

  • 42.

    Wigley, T. M. L. A. Combined mitigation/geoengineering approach to climate stabilization. Science 314, 452–454 (2006).

  • 43.

    Schröder, C., Dahms, T., Paulitz, J., Wichtmann, W. & Wichmann, S. Towards large-scale paludiculture: addressing the challenges of biomass harvesting in wet and rewetted peatlands. Mires Peat 16, 13 (2015).

    • Google Scholar
  • 44.

    Prager, A., Barthelmes, A. & Joosten, H. A touch of tropics in temperate mires: on Alder carrs and carbon cycles. Peatl. Int. 2006/2, 26–31 (2006).

    • Google Scholar
  • 45.

    Yang, J. S., Nib, J. R., Yuana, H. L. & Wang, E. Biodegradation of three different wood chips by Pseudomonas sp. PKE117. Int. Biodeterior. Biodegrad. 60, 90–95 (2007).

  • 46.

    Box, J. D. Investigation of the Folin Ciocalteu reagent for determination of polyphenolic substances in natural waters. Water Res. 17, 511–525 (1983).

  • 47.

    Freeman, C., Lock, M. A. & Reynolds, B. Fluxes of carbon dioxide, methane and nitrous oxide from a Welsh peatland following simulation of water table draw-down: potential feed-back to climatic change. Biogeochemistry 19, 51–60 (1993).

    • Article
    • Google Scholar
  • 48.

    IPCC 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (eds Hiraishi, T. et al.) (IPCC, 2014).

  • 49.

    Chen, Y. P., Lopez-de-Victoria, G. & Lovell, C. R. Utilization of aromatic compounds as carbon and energy sources during growth and N2-fixation by free-living nitrogen fixing bacteria. Arch. Microbiol. 159, 207–212 (1993).

  • 50.

    Freeman, C., Ostle, N. J., Fenner, N. & Kang, H. A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biol. Biochem. 36, 1663–1667 (2004).

  • 51.

    Ranneklev, S. B. & Bååth, E. Temperature-driven adaptation of the bacterial community in peat measured by using thymidine and leucine incorporation. Appl. Environ. Microbiol. 67, 1116–1122 (2001).

  • 52.

    Claessens, H., Oosterbaan, A., Savill, P. & Rondeux, J. A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 83, 163–175 (2010).

    • Article
    • Google Scholar
  • 53.

    Fenner, N. et al. Elevated CO2 effects on peatland plant community carbon dynamics and DOC production. Ecosystems 10, 635–647 (2007).


  • Source: Ecology - nature.com

    Native plants for greening Mediterranean agroecosystems

    Scientists quantify how wave power drives coastal erosion