in

18S rRNA gene sequences of leptocephalus gut contents, particulate organic matter, and biological oceanographic conditions in the western North Pacific

  • 1.

    Tsukamoto, K. Discovery of the spawning area for Japanese eel. Nature 356, 789–791 (1992).

    ADS  Article  Google Scholar 

  • 2.

    Tsukamoto, K. Spawning of eels near a seamount. Nature 439, 929 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Chow, S. et al. Discovery of mature freshwater eels in the open ocean. Fish. Sci. 75, 257–259 (2009).

    CAS  Article  Google Scholar 

  • 4.

    Kurogi, H. et al. First capture of post-spawning female of the Japanese eel Anguilla japonica at the southern West Mariana Ridge. Fish. Sci. 77, 199–205 (2011).

    CAS  Article  Google Scholar 

  • 5.

    Tsukamoto, K. et al. Positive buoyancy in eel leptocephali: an adaptation for life in the ocean surface layer. Mar. Biol. 156, 835–846 (2009).

    Article  Google Scholar 

  • 6.

    Cheng, P. W. & Tzeng, W. N. Timing of metamorphosis and estuarine arrival across the dispersal range of the Japanese eel Anguilla japonica. Mar. Ecol. Prog. Ser. 131, 87–96 (1996).

    ADS  Article  Google Scholar 

  • 7.

    Chen, J. Z., Huang, S. L. & Han, Y. S. Impact of long-term habitat loss on the Japanese eel Anguilla japonica. Estuar. Coast. Shelf Sci. 151, 361–369 (2014).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Tanaka, E. Stock assessment of Japanese eels using Japanese abundance indices. Fish. Sci. 80, 1129–1144 (2014).

    CAS  Article  Google Scholar 

  • 9.

    Jacoby, D. & Gollock, M. Anguilla anguilla. The IUCN red list of threatened species, version 2014.2. IUCN 2014 e.T60344A45833138. https://doi.org/10.1108/ICS-04-2017-0025 (2014).

  • 10.

    Onda, H. et al. Vertical distribution and assemblage structure of leptocephali in the North Equatorial Current region of the western Pacific. Mar. Ecol. Prog. Ser. 575, 119–136 (2017).

    ADS  Article  Google Scholar 

  • 11.

    Saijo, Y., Iizuka, S. & Asaoka, O. Chlorophyll maxima in Kuroshio and adjacent area. Mar. Biol. 4, 190–196 (1969).

    CAS  Article  Google Scholar 

  • 12.

    Furuya, K. Subsurface chlorophyll maximum in the tropical and subtropical western Pacific Ocean: Vertical profiles of phytoplankton biomass and its relationship with chlorophylla and particulate organic carbon. Mar. Biol. 107, 529–539 (1990).

    CAS  Article  Google Scholar 

  • 13.

    Otake, T., Nogami, K. & Maruyama, K. Dissolved and particulate organic matter as possible food sources for eel leptocephali. Mar. Ecol. Prog. Ser. 92, 27–34 (1993).

    ADS  Article  Google Scholar 

  • 14.

    Mochioka, N. & Iwamizu, M. Diet of anguilloid larvae: Leptocephali feed selectively on larvacean houses and fecal pellets. Mar. Biol. 125, 447–452 (1996).

    Google Scholar 

  • 15.

    Miller, M. J., Otake, T. & Aoyama, J. Observations of gut contents of leptocephali in the North Equatorial current and Tomini Bay Indonesia. Coast. Mar. Sci. 35, 277–288 (2012).

    Google Scholar 

  • 16.

    Tomoda, T. et al. Observations of gut contents of anguilliform leptocephali collected in the western North Pacific. Nippon Suisan Gakkaishi 84, 32–44 (2018).

    Article  Google Scholar 

  • 17.

    Deibel, D., Parrish, C. C., Grønkjær, P., Munk, P. & GisselNielsen, T. Lipid class and fatty acid content of the leptocephalus larva of tropical eels. Lipids 47, 623–634 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Liénart, C. et al. Geographic variation in stable isotopic and fatty acid composition of anguilliform leptocephali and particulate organic matter in the South Pacific. Mar. Ecol. Prog. Ser. 544, 225–241 (2016).

    ADS  Article  CAS  Google Scholar 

  • 19.

    Miller, M. J. et al. A low trophic position of Japanese eel larvae indicates feeding on marine snow. Biol. Lett. 9, 20120826 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Miyazaki, S. et al. Stable isotope analysis of two species of anguilliform leptocephali (Anguilla japonica and Ariosoma major) relative to their feeding depth in the North Equatorial Current region. Mar. Biol. 158, 2555–2564 (2011).

    CAS  Article  Google Scholar 

  • 21.

    Chow, S. et al. Japanese eel Anguilla japonica do not assimilate nutrition during the oceanic spawning migration: evidence from stable isotope analysis. Mar. Ecol. Prog. Ser. 402, 233–238 (2010).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Chow, S. et al. Onboard rearing attempts for the Japanese eel leptocephali using POM-enriched water collected in the Western North Pacific. Aquat. Living Resour. 30, 1–7 (2017).

    Article  CAS  Google Scholar 

  • 23.

    Miller, M. J., Hanel, R., Feunteun, E. & Tsukamoto, K. The food source of Sargasso Sea leptocephali. Mar. Biol. 167, 57 (2020).

    CAS  Article  Google Scholar 

  • 24.

    Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Wang, M. & Jeffs, A. G. Nutritional composition of potential zooplankton prey of spiny lobster larvae: a review. Rev. Aquac. 6, 270–299 (2014).

    Article  Google Scholar 

  • 26.

    Ho, T. W., Hwang, J. S., Cheung, M. K., Kwan, H. S. & Wong, C. K. Dietary analysis on the shallow-water hydrothermal vent crab Xenograpsus testudinatus using Illumina sequencing. Mar. Biol. 162, 1787–1798 (2015).

    CAS  Article  Google Scholar 

  • 27.

    Chow, S. et al. Molecular diet analysis of Anguilliformes leptocephalus larvae collected in the western North Pacific. PLoS ONE 14, e0225610 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Riemann, L. et al. Qualitative assessment of the diet of European eel larvae in the Sargasso Sea resolved by DNA barcoding. Biol. Lett. 6, 819–822 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Ayala, D. J. et al. Gelatinous plankton is important in the diet of European eel (Anguilla anguilla) larvae in the Sargasso Sea. Sci. Rep. 8, 6156 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 30.

    Estrada, M. et al. Phytoplankton across tropical and subtropical regions of the Atlantic Indian and Pacific Oceans. PLoS ONE 11, e0151699 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 31.

    Lundgreen, R. B. C. et al. Eukaryotic and cyanobacterial communities associated with marine snow particles in the oligotrophic Sargasso Sea. Sci. Rep. 9, 1–12 (2019).

    CAS  Article  Google Scholar 

  • 32.

    Ayala, D., Riemann, L. & Munk, P. Species composition and diversity of fish larvae in the Subtropical Convergence Zone of the Sargasso Sea from morphology and DNA barcoding. Fish. Oceanogr. 25, 85–104 (2016).

    Article  Google Scholar 

  • 33.

    Arai, M. N. Active and passive factors affecting aggregations of hydromedusae: a review. Sci. Mar. 56, 99–108 (1992).

    Google Scholar 

  • 34.

    Boero, F. et al. Gelatinous plankton: Irregularities rule the world (sometimes). Mar. Ecol. Prog. Ser. 356, 299–310 (2008).

    ADS  Article  Google Scholar 

  • 35.

    Purcell, J. E. Feeding and growth of the siphonophore Muggiaea atlantica (Cunningham 1893). J. Exp. Mar. Bio. Ecol. 62, 39–54 (1982).

    Article  Google Scholar 

  • 36.

    Alldredge, A. Particle aggregation dynamics. In Encyclopedia of Ocean Sciences, 2nd edn, 330–337 (Elsevier Inc., 2008). https://doi.org/10.1016/B978-012374473-9.00468-9

  • 37.

    Hosia, A. & Bamstedt, U. Seasonal abundance and vertical distribution of siphonophores in western Norwegian fjords. J. Plankton Res. 30, 951–962 (2008).

    Article  Google Scholar 

  • 38.

    Lo, W. T., Yu, S. F. & Hsieh, H. Y. Effects of summer mesoscale hydrographic features on epipelagic siphonophore assemblages in the surrounding waters of Taiwan, western North Pacific Ocean. J. Oceanogr. 69, 495–509 (2013).

    Article  Google Scholar 

  • 39.

    Lo, W.-T., Yu, S.-F. & Hsieh, H.-Y. Hydrographic processes driven by seasonal monsoon system affect siphonophore assemblages in tropical-subtropical waters (Western North Pacific Ocean). PLoS ONE 9, e100085 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 40.

    Li, K. Z., Yin, J. Q., Huang, L. M. & Song, X. Y. Comparison of siphonophore distributions during the southwest and northeast monsoons on the northwest continental shelf of the South China Sea. J. Plankton Res. 34, 636–641 (2012).

    Article  Google Scholar 

  • 41.

    López-López, L., Molinero, J. C., Tseng, L.-C., Chen, Q.-C. & Hwang, J.-S. Seasonal variability of the gelatinous carnivore zooplankton community in Northern Taiwan. J. Plankton Res. 35, 677–683 (2013).

    Article  Google Scholar 

  • 42.

    Price, J. F. Upper ocean response to a hurricane. J. Phys. Ocean. 11, 153–175 (1981).

    ADS  Article  Google Scholar 

  • 43.

    Toratani, M. Primary production enhancement by typhoon Ketsana in 2003 in western North Pacific. In Remote Sensing of Inland, Coastal, and Oceanic Waters (eds. Frouin, R. J. et al.) 7150, 715013 (SPIE, 2008).

  • 44.

    Lin, I. I. Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. J. Geophys. Res. Ocean. 117, C03039 (2012).

    ADS  Article  Google Scholar 

  • 45.

    Ishida, H., Furusawa, K., Makino, T., Ishizaka, J. & Watanabe, Y. The effect of typhoons on phytoplankton communities and settling particle flux in the western North Pacific subtropical region. Oceanogr. Jpn. 25, 17–41 (2016).

    Article  Google Scholar 

  • 46.

    Siswanto, E., Ishizaka, J., Yokouchi, K., Tanaka, K. & Tan, C. K. Estimation of interannual and interdecadal variations of typhoon-induced primary production: a case study for the outer shelf of the East China Sea. Geophys. Res. Lett. 34, L03604 (2007).

    ADS  Article  Google Scholar 

  • 47.

    Chen, Y. L. L., Houng-Yung, C., Jan, S. & Tuo, S. H. Phytoplankton productivity enhancement and assemblage change in the upstream Kuroshio after typhoons. Mar. Ecol. Prog. Ser. 385, 111–126 (2009).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Tsuchiya, K. et al. Typhoon-induced response of phytoplankton and bacteria in temperate coastal waters. Estuar. Coast. Shelf Sci. 167, 458–465 (2015).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Typhoon information. Japan Meteorological Agency. https://www.data.jma.go.jp/fcd/yoho/typhoon/index.html. Accessed 10 Dec 2020.

  • 50.

    Miller, M. J. et al. Morphology and gut contents of anguillid and marine eel larvae in the Sargasso Sea. Zool. Anz. 279, 138–151 (2019).

    Article  Google Scholar 

  • 51.

    Singh, P., Liu, Y., Li, L. & Wang, G. Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats. Appl. Microbiol. Biotechnol. 98, 5789–5805 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 52.

    Tanaka, H., Kagawa, H., Ohta, H., Unuma, T. & Nomura, K. The first production of glass eel in captivity: fish reproductive physiology facilitates great progress in aquaculture. Fish Physiol. Biochem. 28, 493–497 (2003).

    Article  Google Scholar 

  • 53.

    Stenly, W. et al. Ingestion by Japanese eel Anguilla japonica larvae on various minute zooplanktons. Aquac. Sci. 61, 341–347 (2013).

    Google Scholar 

  • 54.

    Butts, I. A. E., Sørensen, S. R., Politis, S. N. & Tomkiewicz, J. First-feeding by European eel larvae: a step towards closing the life cycle in captivity. Aquaculture 464, 451–458 (2016).

    Article  Google Scholar 

  • 55.

    Tsukamoto, K. & Miller, M. J. The mysterious feeding ecology of leptocephali: a unique strategy of consuming marine snow materials. Fish. Sci. 87, 11–29 (2020).

    Article  CAS  Google Scholar 

  • 56.

    Bouilliart, M., Tomkiewicz, J., Lauesen, P., De Kegel, B. & Adriaens, D. Musculoskeletal anatomy and feeding performance of pre-feeding engyodontic larvae of the European eel (Anguilla anguilla). J. Anat. 227, 325–340 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Westeberg, H. A proposal regarding the source of nutrition of leptocephalus larvae. Int. Rev. Hydrobiol. Hydrogr. 75, 863–864 (1990).

    Article  Google Scholar 

  • 58.

    Miller, M. Ecology of anguilliform leptocephali: remarkable transparent fish larvae of the ocean surface layer. Aqua-BioScience Monogr. https://doi.org/10.1093/gbe/evy021 (2009).

    ADS  Article  Google Scholar 

  • 59.

    Strom, S., Bright, K., Fredrickson, K. & Brahamsha, B. The Synechococcus cell surface protein SwmA increases vulnerability to predation by flagellates and ciliates. Limnol. Oceanogr. 62, 784–794 (2017).

    ADS  Article  Google Scholar 

  • 60.

    Benner, R. & Kaiser, K. Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter. Limnol. Oceanogr. 48, 118–128 (2003).

    ADS  CAS  Article  Google Scholar 

  • 61.

    Seymour, J., Ahmed, T., Durham, W. & Stocker, R. Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquat. Microb. Ecol. 59, 161–168 (2010).

    Article  Google Scholar 

  • 62.

    Biller, S. J. et al. Bacterial vesicles in marine ecosystems. Science (80-) 343, 183–186 (2014).

    ADS  CAS  Article  Google Scholar 

  • 63.

    Scanlan, D. Bacterial vesicles in the ocean. Science 343, 143–144 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Cisternas-Novoa, C., Lee, C. & Engel, A. Transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP): Differences between their origin and vertical distributions in the ocean. Mar. Chem. 175, 56–71 (2015).

    CAS  Article  Google Scholar 

  • 65.

    Long, R. A. & Azam, F. Abundant protein-containing particles in the sea. Aquat. Microb. Ecol. 10, 213–221 (1996).

    Article  Google Scholar 

  • 66.

    Tanoue, E., Ishii, M. & Midorikawa, T. Discrete dissolved and particulate proteins in oceanic waters. Limnol. Oceanogr. 41, 1334–1343 (1996).

    ADS  CAS  Article  Google Scholar 

  • 67.

    Simon, M., Alldredge, A. L. & Azam, F. Bacterial carbon dynamics on marine snow. Mar. Ecol. Prog. Ser. 65, 205–211 (1990).

    ADS  CAS  Article  Google Scholar 

  • 68.

    Godhe, A. et al. Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR. Appl. Environ. Microbiol. 74, 7174–7182 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Zhu, F., Massana, R., Not, F., Marie, D. & Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52, 79–92 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 70.

    Gong, W. & Marchetti, A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front. Mar. Sci. 6, 219 (2019).

    Article  Google Scholar 

  • 71.

    Furuya, K. & Marumo, R. The structure of the phytoplankton community in the subsurface chlorophyll maxima in the western North Pacific Ocean. J. Plankton Res. 5, 393–406 (1983).

    Article  Google Scholar 

  • 72.

    Kuroki, M., Okamura, A., Yamada, Y., Hayasaka, S. & Tsukamoto, K. Evaluation of optimum temperature for the early larval growth of Japanese eel in captivity. Fish. Sci. 85, 801–809 (2019).

    CAS  Article  Google Scholar 

  • 73.

    Okamura, A. et al. Effects of water temperature on early development of Japanese eel Anguilla japonica. Fish. Sci. 73, 1241–1248 (2007).

    CAS  Google Scholar 

  • 74.

    Kurokawa, T. et al. Influence of water temperature on morphological deformities in cultured larvae of Japanese eel, Anguilla japonica, at completion of yolk resorption. J. World Aquac. Soc. 39, 726–735 (2008).

    Article  Google Scholar 

  • 75.

    Tsukamoto, K. et al. Oceanic spawning ecology of freshwater eels in the western North Pacific. Nat. Commun. 2, 179 (2011).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 76.

    Shirai, K. et al. Temperature and depth distribution of Japanese eel eggs estimated using otolith oxygen stable isotopes. Geochim. Cosmochim. Acta 236, 373–383 (2018).

    ADS  CAS  Article  Google Scholar 

  • 77.

    Ichikawa, T. Particulate organic carbon and nitrogen in the adjacent seas of the Pacific Ocean. Mar. Biol. 68, 49–60 (1982).

    CAS  Article  Google Scholar 

  • 78.

    Hebel, D. V. & Karl, D. M. Seasonal, interannual and decadal variations in particulate matter concentrations and composition in the subtropical North Pacific Ocean. Deep Sea Res Part II Top. Stud. Oceanogr. 48, 1669–1695 (2001).

    ADS  CAS  Article  Google Scholar 

  • 79.

    MacIntyre, S., Alldredge, A. L. & Gotschalk, C. C. Accumulation of marines now at density discontinuities in the water column. Limnol. Oceanogr. 40, 449–468 (1995).

    ADS  Article  Google Scholar 

  • 80.

    Tomas, C. R. & Hasle, G. R. Identifying Marine Phytoplankton (Academic Press, New York, 1997).

    Google Scholar 

  • 81.

    Suzuki, K. et al. Responses of phytoplankton and heterotrophic bacteria in the northwest subarctic Pacific to in situ iron fertilization as estimated by HPLC pigment analysis and flow cytometry. Prog. Oceanogr. 64, 167–187 (2005).

    ADS  Article  Google Scholar 

  • 82.

    Nagai, S. et al. Influences of diurnal sampling bias on fixed-point monitoring of plankton biodiversity determined using a massively parallel sequencing-based technique. Gene 576, 667–675 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Tanabe, A. S. et al. Comparative study of the validity of three regions of the 18S-rRNA gene for massively parallel sequencing-based monitoring of the planktonic eukaryote community. Mol. Ecol. Resour. 16, 402–414 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 84.

    Dzhembekova, N., Moncheva, S., Ivanova, P., Slabakova, N. & Nagai, S. Biodiversity of phytoplankton cyst assemblages in surface sediments of the Black Sea based on metabarcoding. Biotechnol. Biotechnol. Equip. 32, 1507–1513 (2018).

    CAS  Article  Google Scholar 

  • 85.

    Dzhembekova, N., Urusizaki, S., Moncheva, S., Ivanova, P. & Nagai, S. Applicability of massively parallel sequencing on monitoring harmful algae at Varna Bay in the Black Sea. Harmful Algae 68, 40–51 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 86.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 87.

    Schloss, P. D., Gevers, D. & Westcott, S. L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6, e27310 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 88.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 89.

    Cheung, K. L. Y., Huen, J., Houry, W. A. & Ortega, J. Comparison of the multiple oligomeric structures observed for the Rvb1 and Rvb2 proteins. Biochem. Cell Biol. 88, 77–88 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 90.

    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Article  CAS  Google Scholar 

  • 91.

    Horton, T. et al. World register of marine species (WoRMS) (2018).

  • 92.

    R Core team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing , Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/ (2017). https://doi.org/10.2788/95827.

  • 93.

    Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).

    Article  Google Scholar 

  • 94.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 95.

    Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-2. CRAN R (2018). ISBN 0-387-95457-0.


  • Source: Ecology - nature.com

    Novel combination of CRISPR-based gene drives eliminates resistance and localises spread

    How to reduce the environmental impact of your next virtual meeting