in

Accelerated Varroa destructor population growth in honey bee (Apis mellifera) colonies is associated with visitation from non-natal bees

  • 1.

    Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS ONE 7(5), e37235 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Stern, R. et al. Sequential introduction of honeybee colonies increases cross-pollination, fruit-set and yield of ‘Spadona’pear (Pyrus communis L.). J. Hortic. Sci. Biotechnol. 79(4), 652–658 (2004).

    Article 

    Google Scholar 

  • 3.

    Sabbahi, R., DeOliveira, D. & Marceau, J. Influence of honey bee (Hymenoptera: Apidae) density on the production of canola (Crucifera: Brassicacae). J. Econ. Entomol. 98(2), 367–372 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 4.

    Stern, R., Eisikowitch, D. & Dag, A. Sequential introduction of honeybee colonies and doubling their density increases cross-pollination, fruit-set and yield in ‘Red Delicious’ apple. J. Hortic. Sci. Biotechnol. 76(1), 17–23 (2001).

    Article 

    Google Scholar 

  • 5.

    Walters, S. A. & Taylor, B. H. Effects of honey bee pollination on pumpkin fruit and seed yield. HortScience 41(2), 370–373 (2006).

    Article 

    Google Scholar 

  • 6.

    Aras, P., De Oliveira, D. & Savoie, L. Effect of a Honey Bee (Hymenoptera: Apidae) Gradient on the Pollination and Yield of Lowbush Blueberry. J. Econ. Entomol. 89(5), 1080–1083 (1996).

    Article 

    Google Scholar 

  • 7.

    Steinhauer, N., et al., Drivers of colony losses. Curr. Opin. Insect Sci. 2018.

  • 8.

    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower then agricultural demand for pollination. Curr. Biol. 19(11), 915–918 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Kulhanek, K. et al. A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J. Apic. Res. 56, 328–340 (2017).

    Article 

    Google Scholar 

  • 10.

    Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49(1), 1–6 (2010).

    Article 

    Google Scholar 

  • 11.

    Kang, Y. et al. Disease dynamics of honeybees with Varroa destructor as parasite and virus vector. Math. Biosci. 275, 71–92 (2016).

    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • 12.

    Ruffinengo, S. et al. Integrated Pest Management to control Varroa destructor and its implications to Apis mellifera colonies. Zootec. Trop. 32(2), 149–168 (2015).

    Google Scholar 

  • 13.

    Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103(Suppl 1), S96-119 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 14.

    Boecking, O. & Genersch, E. Varroosis–the ongoing crisis in bee keeping. J. Verbr. Lebensm. 3(2), 221–228 (2008).

    Article 

    Google Scholar 

  • 15.

    Ramsey, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. 116(5), 1792–1801 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Yang, X. & Cox-Foster, D. Effects of parasitization by Varroa destructor on survivorship and physiological traits of Apis mellifera in correlation with viral incidence and microbial challenge. Parasitology 134(3), 405–412 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Francis, R. M., Nielsen, S. L. & Kryger, P. Varroa-virus interaction in collapsing honey bee colonies. PLoS ONE 8(3), e57540 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Traynor, K. S. et al. Multiyear survey targeting disease incidence in US honey bees. Apidologie 23, 113–121 (2016).

    Google Scholar 

  • 19.

    Bee Informed, P. Managment Survey Results. 2019 [cited 2018 October 1, 2018].

  • 20.

    Giacobino, A. et al. Risk factors associated with failures of Varroa treatments in honey bee colonies without broodless period. Apidologie 46, 573–582 (2015).

    Article 

    Google Scholar 

  • 21.

    Haber, A. I., Steinhauer, N. A. & van Engelsdorp, D. Use of chemical and nonchemical methods for the control of Varroa destructor (Acari: Varroidae) and associated winter colony losses in U.S. beekeeping operations. J. Econ. Entomol. 112, 1509–1525 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Thoms, C. A. et al. Beekeeper stewardship, colony loss, and Varroa destructor management. Ambio 48, 1209–1218 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Wilkinson, D. & Smith, G. C. A model of the mite parasite, Varroa destructor, on honeybees (Apis mellifera) to investigate parameters important to mite population growth. Ecol. Model. 148(3), 263–275 (2002).

    Article 

    Google Scholar 

  • 24.

    Harris, J. W. et al. Variable population growth of Varroa destructor (Mesostigmata: Varroidae) in colonies of honey bees (Hymenoptera: Apidae) during a 10-year period. Environ. Entomol. 32(6), 1305–1312 (2003).

    Article 

    Google Scholar 

  • 25.

    DeGrandi-Hoffman, G. & Curry, R. A mathematical model of Varroa mite (Varroa destructor Anderson and Trueman) and honeybee (Apis mellifera L.) population dynamics. Int. J. Acarol. 30(3), 259–274 (2004).

    Article 

    Google Scholar 

  • 26.

    Pfeiffer, K. J. & Crailsheim, K. Drifting of honeybees. Insectes Soc. 45(2), 151–167 (1998).

    Article 

    Google Scholar 

  • 27.

    Goodwin, R. M. et al. Drift of Varroa destructor-infested worker honey bees to neighbouring colonies. J. Apic. Res. 45(3), 155–156 (2006).

    Article 

    Google Scholar 

  • 28.

    Nolan, M. P. & Delaplane, K. S. Distance between honey bee Apis mellifera colonies regulates populations of Varroa destructor at a landscape scale. Apidologie 48(1), 8–16 (2017).

    Article 

    Google Scholar 

  • 29.

    Seeley, T. D. & Smith, M. L. Crowding honeybee colonies in apiaries can increase their vulnerability to the deadly ectoparasite Varroa destructor. Apidologie 46(6), 716–727 (2015).

    Article 

    Google Scholar 

  • 30.

    Frey, E., Schnell, H. & Rosenkranz, P. Invasion of Varroa destructor mites into mite-free honey bee colonies under the controlled conditions of a military training area. J. Apic. Res. 50(2), 138–144 (2011).

    Article 

    Google Scholar 

  • 31.

    Frey, E. & Rosenkranz, P. Autumn invasion rates of Varroa destructor (Mesostigmata: Varroidae) into honey bee (Hymenoptera: Apidae) colonies and the resulting increase in mite populations. J. Econ. Entomol. 107(2), 508–515 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Kralj, J. & Fuchs, S. Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers. Apidologie 37(5), 577–587 (2006).

    Article 

    Google Scholar 

  • 33.

    Peck, D. T. & Seeley, T. D. Mite bombs or robber lures? The roles of drifting and robbing in Varroa destructor transmission from collapsing honey bee colonies to their neighbors. PLoS ONE 14(6), e0218392 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Forfert, N. et al. Parasites and pathogens of the honeybee (Apis mellifera) and their influence on inter-colonial transmission. PLoS ONE 10(10), e0140337 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Steinhauer, N. & Saegerman, C. Prioritizing changes in management practices associated with reduced winter honey bee colony losses for US beekeepers. Sci. Total Environ. 753, 141629 (2020).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 36.

    DeGrandi-Hoffman, G. et al. Population growth of Varroa destructor (Acari: Varroidae) in honey bee colonies is affected by the number of foragers with mites. Exp. Appl. Acarol. 69(1), 21–34 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Hagler, J. et al. A method for distinctly marking honey bees, Apis mellifera, originating from multiple apiary locations. J. Insect Sci. 11(1), 143 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Delaplane, K. S., van der Steen, J. & Guzman-Novoa, E. Standard methods for estimating strength parameters of Apis mellifera colonies. J. Apic. Res. 52(1), 1–12 (2013).

    Article 

    Google Scholar 

  • 39.

    Winston, M. The Biology of the Honey Bee 281 (Harvard University Press, Cambridge, MA, 1987).

    Google Scholar 

  • 40.

    Nazzi, F. & Le Conte, Y. Ecology of Varroa destructor, the major ectoparasite of the western honey bee, Apis mellifera. Ann. Rev. Entomol. 61, 417–432 (2016).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Geffre, A. C. et al. Honey bee virus causes context-dependent changes in host social behavior. Proc. Natl. Acad. Sci. 117(19), 10406–10413 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Rosenkranz, P. Honey bee (Apis mellifera L.) tolerance to Varroa jacobsoni Oud, South America. Apidologie 30(2/3), 159–172 (1999).

    Article 

    Google Scholar 

  • 43.

    Locke, B. Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie 47(3), 467–482 (2016).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Cooling homes without warming the planet

    Powering the energy transition with better storage