in

An under-ice bloom of mixotrophic haptophytes in low nutrient and freshwater-influenced Arctic waters

  • 1.

    Arrigo, K. R. & Dijken, G. L. Secular trends in Arctic Ocean net primary production. J. Geophys. Res. Oceans. 116, C09011 (2011).

    ADS  Google Scholar 

  • 2.

    Thomas, D. N. Sea Ice Ch 4 (Wiley Blackwell, Oxford, 2017).

    Google Scholar 

  • 3.

    Arrigo, K. R. et al. Massive phytoplankton blooms under Arctic sea ice. Science 336, 1408–1408 (2012).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 40850 (2016).

    ADS  Article  Google Scholar 

  • 5.

    Horvat, C. et al. The frequency and extent of sub-ice phytoplankton bloom in the Arctic Ocean. Sci. Adv. 3, e1601191 (2017).

    ADS  Article  Google Scholar 

  • 6.

    Ardyna, M. et al. Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean. Elem. Sci. Anth. 8, 30 (2020).

    Article  Google Scholar 

  • 7.

    Ardyna, M. et al. Under-ice phytoplankton blooms: Shedding light on the “invisible” part of Arctic primary production. Front. Mar. Sci. 7, 608032 (2020).

    Article  Google Scholar 

  • 8.

    Rysgaard, S. & Glud, R. N. Carbon cycling in Arctic marine ecosystems: Case study Young Sound (ed. Rysgaard, S. & Glud, R. N.) 62–94 (Meddelelser om Grønland, Bioscience Vol 58, Copenhagen, Denmark, the Commission for Scientific Research in Greenland, 2007).

  • 9.

    Meire, L. et al. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Chang. Biol. 23, 5344–5357 (2017).

    ADS  Article  Google Scholar 

  • 10.

    Randelhoff, A. et al. Pan-Arctic Ocean primary production constrained by turbulent nitrate fluxes. Front. Mar. Sci. 7, 150 (2020).

    Article  Google Scholar 

  • 11.

    Holding, J. M. et al. Seasonal and spatial patterns of primary production in a high-latitude fjord affected by Greenland Ice Sheet run-off. Biogeosciences 16, 3777–3792 (2019).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Juul-Pedersen, T. et al. Seasonal and interannual phytoplankton production in a sub-Arctic tidewater outlet glacier fjord, SW Greenland. Mar. Ecol. Prog. Ser. 524, 27–38 (2015).

    ADS  Article  Google Scholar 

  • 13.

    Sejr, M. K. et al. Evidence of local and regional freshening of Northeast Greenland coastal waters. Sci. Rep. 7, 13183 (2017).

    ADS  Article  Google Scholar 

  • 14.

    Boone, W. et al. Circulation and fjord-shelf exchange during the ice-covered period in Young Sound-Tyrolerfjord, Northeast Greenland (74°N). Estuar. Coast. Shelf Sci. 194, 205–216 (2017).

    ADS  Article  Google Scholar 

  • 15.

    Haine, T. W. N. et al. Arctic freshwater export: Status, mechanisms, and prospects. Glob. Planet Change 125, 13–35 (2015).

    ADS  Article  Google Scholar 

  • 16.

    Carmack, E. C. et al. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage export, and physical and biogeochemical consequences in the Arctic and global ocean. J. Geophys. Res. Biogeosci. 121, 675–717 (2015).

    Article  Google Scholar 

  • 17.

    Lund-Hansen, L. C. et al. Will low primary production rates in the Amundsen Basin (Arctic Ocean) remain low in a future ice-free setting, and what governs this production?. J. Mar. Syst. 205, 103287 (2020).

    Article  Google Scholar 

  • 18.

    Dahl, E., Bagøien, E., Edvardsen, B. & Stenseth, N. C. The dynamics of Chrysochromulina species in the Skagerrak in relation to environmental conditions. J. Sea. Res. 54, 15–24 (2005).

    ADS  Article  Google Scholar 

  • 19.

    Hansen, P. J., Nielsen, T. G. & Kaas, H. Distribution and growth of protists and mesozooplankton during a bloom of Chrysochromulina spp. (Prymnesiophyceae, Prymnesiales). Phycologia 34, 409–416 (1995).

    Article  Google Scholar 

  • 20.

    Nielsen, T. G., Kiørboe, T. & Bjørnsen, P. K. Effects of a Chrysochromulina polylepis subsurface bloom on the planktonic community. Mar. Ecol. Prog. Ser. 62, 21–35 (1990).

    ADS  Article  Google Scholar 

  • 21.

    Hällfors, G. & Niemi, Å. A Chrysochromulina (Haptophyceae) bloom under the ice in the Tvärminne Archipelago, southern coast of Finland. Acta Soc. Fauna Flora Fenn. 50, 89–104 (1974).

    Google Scholar 

  • 22.

    Manton, I. Chrysochromulina tenuispine sp. nov. from arctic Canada. Br. Phycol. J. 13, 227–234 (1978).

    Article  Google Scholar 

  • 23.

    Green, J. C. & Leadbeater, B. S. C. The Haptophyte Algae ch. 13 (Systematics Association, London, 1994).

    Google Scholar 

  • 24.

    Hansen, P. J. & Hjorth, M. Growth and grazing responses of Chrysochromulina ericina (Prymnesiophyceae): The role of irradiance, prey concentration and pH. Mar. Biol. 141, 975–983 (2002).

    CAS  Article  Google Scholar 

  • 25.

    Anderson, R., Charvet, S. & Hansen, P. J. Mixotrophy in chlorophytes and haptophytes—Effect of irradiance, macronutrient micronutrient and vitamin limitation. Front. Microbiol. 9, 1704 (2018).

    Article  Google Scholar 

  • 26.

    Anderson, R. & Hansen, P. J. Meteorological conditions induce strong shifts in mixotrophic and heterotrophic flagellate bacterivory over small spatio-temporal scales. Limnol. Oceanogr. 9999, 1–11 (2019).

    Google Scholar 

  • 27.

    McKie-Krisberg, Z. M., Gast, R. J. & Sanders, R. W. Physiological responses of three species of Antarctic mixotrophic phytoflagellates to changes in light and dissolved nutrients. Microbiol. Ecol 70, 21–29 (2015).

    CAS  Article  Google Scholar 

  • 28.

    McKie-Krisberg, Z. M., Sanders, R. W. & Gast, R. J. Evaluation of mixotrophy-associated gene expression in two species of polar marine algae. Front. Mar. Sci. 5, 273 (2018).

    Article  Google Scholar 

  • 29.

    Rysgaard, S., Nielsen, T. G. & Hansen, B. W. Seasonal variation in nutrients, pelagic primary production and grazing in a high-Arctic coastal marine ecosystem, Young Sound, Northeast Greenland. Mar. Ecol. Prog. Ser. 179, 13–25 (1999).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Bendtsen, J., Mortensen, J. & Rysgaard, S. Seasonal surface layer dynamics and sensitivity to runoff in a high Arctic fjord (Young Sound/Tyrolerfjord, 74°N). J. Geophys. Res. Oceans. 119, 1–18 (2014).

    Article  Google Scholar 

  • 31.

    Krawczyk, D. W. et al. Spatial and temporal distribution of planktonic protists in the East Greenland fjord and offshore waters. Mar. Ecol. Prog. Ser. 538, 99–116 (2015).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Søgaard, D. H., Deming, J. W., Meire, L. & Rysgaard, S. Effects of microbial processes and CaCO3 dynamics on inorganic carbon cycling in snow-covered Arctic winter sea ice. Mar. Ecol. Prog. Ser. 611, 31–44 (2019).

    ADS  Article  Google Scholar 

  • 33.

    Rysgaard, S. et al. Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics. Cryosphere 7, 707–718 (2013).

    ADS  Article  Google Scholar 

  • 34.

    Søgaard, D. H. et al. Autotrophic and heterotrophic activity in Arctic first-year sea ice: Seasonal study from Malene Bight, SW Greenland. Mar. Ecol. Prog. Ser. 419, 31–45 (2010).

    ADS  Article  Google Scholar 

  • 35.

    Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of Seawater Analysis (WILEY-VCH Verlag GmbH, Weinheim, 1999).

    Google Scholar 

  • 36.

    Steemann-Nielsen, E. The use of radio-active carbon (C14) for measuring organic production in the sea. ICES J. Mar. Sci. 18, 117–140 (1952).

    Article  Google Scholar 

  • 37.

    Søgaard, D. H. et al. The relative contributions of biological and abiotic processes to carbon dynamics in subarctic sea ice. Polar Biol. 36, 1761–1777 (2013).

    Article  Google Scholar 

  • 38.

    Platt, T., Gallegos, C. L. & Harrison, W. G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 38, 687–701 (1980).

    Google Scholar 

  • 39.

    Jespersen, A. M. & Christoffersen, K. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Arch. Hydrobiol. 109, 445–454 (1987).

    CAS  Google Scholar 

  • 40.

    Ralph, P. J. & Gademann, R. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat. Bot. 82, 222–237 (2005).

    CAS  Article  Google Scholar 

  • 41.

    Jassby, A. D. & Platt, T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21, 540–547 (1976).

    ADS  CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism

    Scientists as engaged citizens