in

Annual aboveground carbon uptake enhancements from assisted gene flow in boreal black spruce forests are not long-lasting

  • 1.

    Fischer, H. et al. Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nat. Geosci. 11, 474–485 (2018).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Diffenbaugh, N. S., Singh, D. & Mankin, J. S. Unprecedented climate events: historical changes, aspirational targets, and national commitments. Sci. Adv. 4, eaao3354 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 3.

    Kim, J.-S. et al. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nat. Geosci. 10, 572–576 (2017).

    ADS  CAS  Article  Google Scholar 

  • 4.

    United Nations Framework Convention on Climate Change (UNFCCC). Adoption of the Paris Agreement (2015).

  • 5.

    Intergovernmental Panel on Climate Change (IPCC). Fifth Assessment Report: Climate Change (AR5) (2014).

  • 6.

    Nabuurs, G. J. et al. Forestry. In Climate Change 2007: Mitigation (Cambridge University Press, 2007).

  • 7.

    Smyth, C. E. et al. Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 11, 3515–3529 (2014).

    ADS  Article  Google Scholar 

  • 8.

    Xu, Z., Smyth, C. E., Lemprière, T. C., Rampley, G. J. & Kurz, W. A. Climate change mitigation strategies in the forest sector: biophysical impacts and economic implications in British Columbia. Can. Mitig. Adapt. Strateg. Glob. Change 23, 257–290 (2018).

    Article  Google Scholar 

  • 9.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 10.

    Peterson St-Laurent, G., Hagerman, S., Kozak, R. & Hoberg, G. Public perceptions about climate change mitigation in British Columbia’s forest sector. PLoS ONE 13, e0195999 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 11.

    Ma, Z. et al. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl Acad. Sci. USA 109, 2423–2427 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 12.

    Charney, N. D. et al. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol. Lett. 19, 1119–1128 (2016).

    PubMed  Article  Google Scholar 

  • 13.

    Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Marchand, W. et al. Untangling methodological and scale considerations in growth and productivity trend estimates of Canada’s forests. Environ. Res. Lett. 13, 093001 (2018).

    ADS  Article  Google Scholar 

  • 15.

    Browne, L., Wright, J. W., Fitz-Gibbon, S., Gugger, P. F. & Sork, V. L. Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene flow. Proc. Natl Acad. Sci. USA. 116, 25179–25185 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Sally, N. A. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu Rev. Ecol. Evol. Syst. 44, 367–388 (2013).

    Article  Google Scholar 

  • 17.

    Lemprière, T. C. et al. Canadian boreal forests and climate change mitigation. Environ. Rev. 21, 293–321 (2013).

    Article  Google Scholar 

  • 18.

    Winder, R., Nelson, E. & Beardmore, T. Ecological implications for assisted migration in Canadian forests. For. Chron. 87, 731–744 (2011).

    Article  Google Scholar 

  • 19.

    Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).

    PubMed  Article  Google Scholar 

  • 20.

    Isaac-Renton, M. et al. Northern forest tree populations are physiologically maladapted to drought. Nat. Commun. 9, 5254 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Field, E., Schönrogge, K., Barsoum, N., Hector, A. & Gibbs, M. Individual tree traits shape insect and disease damage on oak in a climate‐matching tree diversity experiment. Ecol. Evol. 9, 8524–8540 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Depardieu, C. et al. Adaptive genetic variation to drought in a widely distributed conifer suggests a potential for increasing forest resilience in a drying climate. N. Phytol. 227, 427–439 (2020).

    CAS  Article  Google Scholar 

  • 23.

    Montwé, D., Isaac-Renton, M., Hamann, A. & Spiecker, H. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat. Commun. 9, 1574 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 24.

    Girardin, M. P. et al. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Glob. Change Biol. 22, 627–643 (2016).

    ADS  Article  Google Scholar 

  • 25.

    Hember, R. A., Kurz, W. A. & Coops, N. C. Increasing net ecosystem biomass production of Canada’s boreal and temperate forests despite decline in dry climates. Glob. Biogeochem. Cycles 31, 134–158 (2017).

    CAS  Article  Google Scholar 

  • 26.

    Boucher, D. et al. Current and projected cumulative impacts of fire, drought, and insects on timber volumes across Canada. Ecol. Appl. 28, 1245–1259 (2018).

    PubMed  Article  Google Scholar 

  • 27.

    Klein, R. J. T., Schipper, E. L. F. & Dessai, S. Integrating mitigation and adaptation into climate and development policy: three research questions. Environ. Sci. Policy 8, 579–588 (2005).

    Article  Google Scholar 

  • 28.

    Zamudio, K. R., Bell, R. C. & Mason, N. A. Phenotypes in phylogeography: species’ traits, environmental variation, and vertebrate diversification. Proc. Natl Acad. Sci. USA 113, 8041–8048 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Massatti, R. et al. Population history provides foundational knowledge for utilizing and developing native plant restoration materials. Evol. Appl. 11, 2025–2039 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Sork, V. L. et al. Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genet. Genomes 9, 901–911 (2013).

    Article  Google Scholar 

  • 31.

    Morgenstern, E. K. & Mullin, T. J. Growth and survival of black spruce in the range-wide provenance study. Can. J. Res. 20, 130–143 (1990).

    Article  Google Scholar 

  • 32.

    Rehfeldt, G. E., Wykoff, W. R. & Ying, C. C. Physiologic plasticity, evolution, and impacts of a changing climate on Pinus contorta. Clim. Change 50, 355–376 (2001).

    Article  Google Scholar 

  • 33.

    Morgenstern, E. K. Range-wide genetic variation of black spruce. Can. J. Res. 8, 463–473 (1978).

    Article  Google Scholar 

  • 34.

    Thomson, A. M., Riddell, C. L. & Parker, W. H. Boreal forest provenance tests used to predict optimal growth and response to climate change: 2. Black spruce. Can. J. Res. 39, 143–153 (2009).

    Article  Google Scholar 

  • 35.

    Pedlar, J. H. & McKenney, D. W. Assessing the anticipated growth response of northern conifer populations to a warming climate. Sci. Rep. 7, 43881 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Mahony, C. R. et al. Evaluating genomic data for management of local adaptation in a changing climate: a lodgepole pine case study. Evol. Appl. 13, 116–131 (2020).

    PubMed  Article  Google Scholar 

  • 37.

    Housset, J. M. et al. Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change. N. Phytol. 218, 630–645 (2018).

    Article  Google Scholar 

  • 38.

    Heer, K. et al. Linking dendroecology and association genetics in natural populations: stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.). Mol. Ecol. 27, 1428–1438 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Bouriaud, O., Teodosiu, M., Kirdyanov, A. V. & Wirth, C. Influence of wood density in tree-ring-based annual productivity assessments and its errors in Norway spruce. Biogeosciences 12, 6205–6217 (2015).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Babst, F. et al. When tree rings go global: challenges and opportunities for retro- and prospective insight. Quat. Sci. Rev. 197, 1–20 (2018).

    ADS  Article  Google Scholar 

  • 41.

    Jaramillo-Correa, J. P., Beaulieu, J. & Bousquet, J. Variation in mitochondrial DNA reveals multiple distant glacial refugia in black spruce (Picea mariana), a transcontinental North American conifer. Mol. Ecol. 13, 2735–2747 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Gérardi, S., Jaramillo-Correa, J. P., Beaulieu, J. & Bousquet, J. From glacial refugia to modern populations: new assemblages of organelle genomes generated by differential cytoplasmic gene flow in transcontinental black spruce: assemblages of organelle genomes. Mol. Ecol. 19, 5265–5280 (2010).

    PubMed  Article  CAS  Google Scholar 

  • 43.

    Rehfeldt, G. E., Leites, L. P., Joyce, D. G. & Weiskittel, A. R. Role of population genetics in guiding ecological responses to climate. Glob. Change Biol. 24, 858–868 (2018).

    ADS  Article  Google Scholar 

  • 44.

    Beaulieu, J., Corriveau, A. & Daoust, G. Phenotypic Stability and Delineation of Black Spruce Breeding Zones in Quebec. Vol. LAU-X-85E (Forestry Canada, Quebec Region, Sainte-Foy, Quebec, 1989).

  • 45.

    Perrin, M., Rossi, S. & Isabel, N. Synchronisms between bud and cambium phenology in black spruce: early-flushing provenances exhibit early xylem formation. Tree Physiol. 37, 593–603 (2017).

    PubMed  Article  Google Scholar 

  • 46.

    Sniderhan, A. E., McNickle, G. G. & Baltzer, J. L. Assessing local adaptation vs. plasticity under different resource conditions in seedlings of a dominant boreal tree species. AoB Plants 10, ply004 (2018).

  • 47.

    Newton, P. F. Systematic review of yield responses of four North American conifers to forest tree improvement practices. Ecol. Manag. 172, 29–51 (2003).

    Article  Google Scholar 

  • 48.

    Marchand, W. et al. Strong overestimation of water‐use efficiency responses to rising CO2 in tree‐ring studies. Glob. Change Biol. https://doi.org/10.1111/gcb.15166 (2020).

  • 49.

    Metsaranta, J. M. Long-term tree-ring derived carbon dynamics of an experimental plantation in relation to species and density in Northwestern Ontario. Can. Ecol. Manag. 441, 229–241 (2019).

    Article  Google Scholar 

  • 50.

    Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. 10, 2171 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 51.

    DOrangeville, L. et al. Northeastern North America as a potential refugium for boreal forests in a warming climate. Science 352, 1452–1455 (2016).

    ADS  CAS  Article  Google Scholar 

  • 52.

    Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313 (2019).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Rossi, S. Bud break responds more strongly to daytime than night‐time temperature under asymmetric experimental warming. Glob. Change Biol. 9 (2016).

  • 54.

    Frechette, E., Ensminger, I., Bergeron, Y., Gessler, A. & Berninger, F. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate? Tree Physiol. 31, 1204–1216 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Verbyla, D. Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska. Environ. Res. Lett. 10, 125016 (2015).

    ADS  Article  Google Scholar 

  • 56.

    Trujillo, E. Elevation-dependent influence of snow accumulation on forest greening. Nat. Geosci. 5, 5 (2012).

    Article  CAS  Google Scholar 

  • 57.

    Vaganov, E. A., Hughes, M. K., Kirdyanov, A. V., Schweingruber, F. H. & Silkin, P. P. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400, 149–151 (1999).

    ADS  CAS  Article  Google Scholar 

  • 58.

    Ols, C., Girardin, M. P., Hofgaard, A., Bergeron, Y. & Drobyshev, I. Monitoring climate sensitivity shifts in tree-rings of eastern boreal North America using model-data comparison: shifts in tree growth sensivity to climate. Ecosystems 21, 1042–1057 (2018).

    CAS  Article  Google Scholar 

  • 59.

    Prunier, J., Gérardi, S., Laroche, J., Beaulieu, J. & Bousquet, J. Parallel and lineage-specific molecular adaptation to climate in boreal black spruce. Mol. Ecol. 21, 4270–4286 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 60.

    Capblancq, T. et al. Climate-associated genetic variation in Fagus sylvatica and potential responses to climate change in the French Alps. J. Evol. Biol. https://doi.org/10.1111/jeb.13610 (2020).

  • 61.

    Liepe, K. J., Hamann, A., Smets, P., Fitzpatrick, C. R. & Aitken, S. N. Adaptation of lodgepole pine and interior spruce to climate: implications for reforestation in a warming world. Evol. Appl. 9, 409–419 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).

    PubMed  Article  Google Scholar 

  • 63.

    Wegrzyn, J. L. et al. Cyberinfrastructure and resources to enable an integrative approach to studying forest trees. Evol. Appl. 13, 228–241 (2020).

    PubMed  Article  Google Scholar 

  • 64.

    Kurz, W. A. et al. Carbon in Canada’s boreal forest —a synthesis. Environ. Rev. 21, 260–292 (2013).

    CAS  Article  Google Scholar 

  • 65.

    Alberto, F. J. et al. Potential for evolutionary responses to climate change—evidence from tree populations. Glob. Change Biol. 19, 1645–1661 (2013).

    ADS  Article  Google Scholar 

  • 66.

    Splawinski, T. B., Cyr, D., Gauthier, S., Jetté, J.-P. & Bergeron, Y. Analyzing risk of regeneration failure in the managed boreal forest of northwestern Quebec. Can. J. Res. 49, 680–691 (2019).

    Article  Google Scholar 

  • 67.

    Chaste, E., Girardin, M. P., Kaplan, J. O., Bergeron, Y. & Hély, C. Increases in heat-induced tree mortality could drive reductions of biomass resources in Canada’s managed boreal forest. Landsc. Ecol. https://doi.org/10.1007/s10980-019-00780-4 (2019).

  • 68.

    McLane, S. C., Daniels, L. D. & Aitken, S. N. Climate impacts on lodgepole pine (Pinus contorta) radial growth in a provenance experiment. Ecol. Manag. 262, 115–123 (2011).

    Article  Google Scholar 

  • 69.

    Larsson, L. CooRecorder and Cdendro Programs of the CooRecorder/Cdendro Package (Version 7.6) (Cybis Elektronik, 2013).

  • 70.

    Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull. 43, 69–78 (1983).

  • 71.

    de Lafontaine, G., Prunier, J., Gérardi, S. & Bousquet, J. Tracking the progression of speciation: variable patterns of introgression across the genome provide insights on the species delimitation between progenitor-derivative spruces (Picea mariana × P. rubens). Mol. Ecol. 24, 5229–5247 (2015).

    PubMed  Article  Google Scholar 

  • 72.

    Ehrich, M. et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl Acad. Sci. USA. 102, 15785–15790 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 73.

    Ung, C.-H., Jing Guo, X. & Fortin, M. Canadian national taper models. For. Chron. 89, 211–224 (2013).

    Article  Google Scholar 

  • 74.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 75.

    Wang, J. The computer program structure for assigning individuals to populations: easy to use but easier to misuse. Mol. Ecol. Resour. 17, 981–990 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 76.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 77.

    Excoffier, L. Evolution of human mitochondrial DNA: evidence for departure from a pure neutral model of populations at equilibrium. J. Mol. Evol. 30, 125–139 (1990).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 78.

    Meirmans, P. G. genodive version 3.0: easy‐to‐use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 20, 1126–1131 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 79.

    Regniere, J. & Bolstad, P. Statistical simulation of daily air temperature patterns Eastern North America to forecast seasonal events in insect pest management. Environ. Entomol. 23, 1368–1380 (1994).

    Article  Google Scholar 

  • 80.

    Hogg, E. H., Barr, A. G. & Black, T. A. A simple soil moisture index for representing multi-year drought impacts on aspen productivity in the western Canadian interior. Agric. Meteorol. 178–179, 173–182 (2013).

    Article  Google Scholar 

  • 81.

    Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 65, 95–114 (2003).

    MathSciNet  MATH  Article  Google Scholar 

  • 82.

    Rossi, S., Morin, H. & Deslauriers, A. Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis. J. Exp. Bot. 63, 2117–2126 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 83.

    Wood, S. Generalized Additive Models: An Introduction with R. 2nd edn Vol. 66 (Chapman and Hall/CRC, 2006).

  • 84.

    R Development Core Team. R: A Language and Environment for Statistical Computing (2013).

  • 85.

    Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, https://doi.org/10.18637/jss.v022.i04 (2007).

  • 86.

    Fisher R. A. Statistical Methods for Research Workers 4th edn (Oliver and Boyd, London, 1932).

  • 87.

    Legendre, P. & Legendre, L. Numerical Ecology Vol. 24, 3rd edn (Elsevier Science BV, Amsterdam, 2012).

  • 88.

    Reiss, P. T. & Ogden, R. T. Smoothing parameter selection for a class of semiparametric linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 505–523 (2009).

    MathSciNet  MATH  Article  Google Scholar 

  • 89.

    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).

    MathSciNet  MATH  Article  Google Scholar 

  • 90.

    Beaudoin, A. et al. Mapping attributes of Canada’s forests at moderate resolution through k NN and MODIS imagery. Can. J. Res. 44, 521–532 (2014).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    The catalyzing potential of J-WAFS seed grants

    Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities