in

Automated design of synthetic microbial communities

  • 1.

    Pantoja-Hernández, L. & Martínez-García, J. C. Retroactivity in the context of modularly structured biomolecular systems. Front. Bioeng. Biotechnol. 3, 85 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Jayanthi, S. & Del Vecchio, D. Retroactivity attenuation in bio-molecular systems based on timescale separation. IEEE Trans. Autom. Control 56, 748–761 (2011).

    MathSciNet  Article  Google Scholar 

  • 3.

    Gyorgy, A. et al. Isocost lines describe the cellular economy of genetic circuits. Biophys. J. 109, 639–646 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Summers, D. The kinetics of plasmid loss. Trends Biotechnol 9, 273–278 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Mishra, D., Rivera, P. M., Lin, A., Del Vecchio, D. & Weiss, R. A load driver device for engineering modularity in biological networks. Nat. Biotechnol. 32, 1268–1275 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Weiße, A. Y., Oyarzún, D. A., Danos, V. & Swain, P. S. Mechanistic links between cellular trade-offs, gene expression, and growth. Proc. Natl. Acad. Sci. USA 112, E1038–E1047 (2015).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 7.

    Brenner, K., You, L. & Arnold, F. H. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26, 483–489 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Kennedy, T. A. et al. Biodiversity as a barrier to ecological invasion. Nature 417, 636–638 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Beyter, D. et al. Diversity, productivity, and stability of an industrial microbial ecosystem. Appl. Environ. Microbiol. 82, 2494–2505 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Butler, G. J. & Wolkowicz, G. S. K. A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl. Math. 45, 138–151 (1985).

    MathSciNet  Article  Google Scholar 

  • 11.

    Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microb. 8, 15–25 (2010).

    CAS  Article  Google Scholar 

  • 13.

    Freilich, S. et al. Competitive and cooperative metabolic interactions in bacterial communities. Nat. Commun. 2, 589 (2011).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 14.

    Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl. Acad. Sci. USA 112, 6449–6454 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    May, A. et al. Kombucha: a novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ 7, e7565 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Czaran, T. L., Hoekstra, R. F. & Pagie, L. Chemical warfare between microbes promotes biodiversity. Proc. Natl. Acad. Sci. USA 99, 786–790 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Dinh, C. V., Chen, X. & Prather, K. L. J. Development of a quorum-sensing based circuit for control of coculture population composition in a naringenin production system. ACS Synth. Biol. 9, 590–597 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Stephens, K., Pozo, M., Tsao, C.-Y., Hauk, P. & Bentley, W. E. Bacterial coculture with cell signaling translator and growth controller modules for autonomously regulated culture composition. Nat. Commun. 10, 4129 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 19.

    Liu, F., Mao, J., Lu, T. & Hua, Q. Synthetic, context-dependent microbial consortium of predator and prey. ACS Synth. Biol. 8, 1713–1722 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Gupta, A., Reizman, I. M. B., Reisch, C. R. & Prather, K. L. J. Dynamic regulation of metabolic flux in engineered bacteria using a pathwayindependent quorum-sensing circuit. Nat. Biotechnol. 35, 273–279 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Scott, S. R. & Hasty, J. Quorum sensing communication modules for microbial consortia. ACS Synth. Biol. 5, 969–977 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Balagaddé, F. K. et al. A synthetic Escherichia coli predator–prey ecosystem. Mol. Syst. Biol. 4, 187 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Kong, W., Meldgin, D. R., Collins, J. J. & Lu, T. Designing microbial consortia with defined social interactions. Nat. Chem. Biol. 14, 821–829 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Rebuffat S. M. (ed. Kastin, A. J.) In Handbook of Biologically Active Peptides 129–137 (Elsevier, 2013).

  • 25.

    Geldart, K., Forkus, B., McChesney, E., McCue, M. & Kaznessis, Y. pMPES: a modular peptide expression system for the delivery of antimicrobial peptides to the site of gastrointestinal infections using probiotics. Pharmaceuticals 9, 60 (2016).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 26.

    Fedorec, A. J. H. et al. Two new plasmid post-segregational killing mechanisms for the implementation of synthetic gene networks in Escherichia coli. iScience 14, 323–334 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    MacDonald, J. T., Barnes, C., Kitney, R. I., Freemont, P. S. & Stan, G.-B. V. Computational design approaches and tools for synthetic biology. Integr. Biol. 3, 97 (2011).

    Article  Google Scholar 

  • 28.

    Kirk, P., Thorne, T. & Stumpf, M. P. H. Model selection in systems and synthetic biology. Curr. Opin. Biotechnol. 24, 767–774 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Barnes, C. P., Silk, D., Sheng, X. & Stumpf, M. P. H. Bayesian design of synthetic biological systems. Proc. Natl. Acad. Sci. USA 108, 15190–15195 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 30.

    Woods, M. L., Leon, M., Perez-Carrasco, R. & Barnes, C. P. A Statistical approach reveals designs for the most robust stochastic gene oscillators. ACS Synth. Biol. 5, 459–470 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Leon, M., Woods, M. L., Fedorec, A. J. H. & Barnes, C. P. A computational method for the investigation of multistable systems and its application to genetic switches. BMC Syst. Biol. 10, 130 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Yeoh, J. W. et al. An automated biomodel selection system (BMSS) for gene circuit designs. ACS Synth. Biol. 8, 1484–1497 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Beal, J. et al. An end-to-end workflow for engineering of biological networks from high-level specifications. ACS Synth. Biol. 1, 317–331 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Rodrigo, G. & Jaramillo, A. AutoBioCAD: full biodesign automation of genetic circuits. ACS Synth. Biol. 2, 230–236 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Friedman, J. & Gore, J. Ecological systems biology: the dynamics of interacting populations. Current Opinion in Systems Biology 1, 114–121 (2017).

    Article  Google Scholar 

  • 36.

    Toni, T., Welch, D., Strelkowa, N., Ipsen, A. & Stumpf, M. P. H. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6, 187–202 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    MathSciNet  Article  Google Scholar 

  • 38.

    Salis, H. M., Mirsky, E. A. & Christopher, C. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Marisch, K. et al. A Comparative analysis of industrial Escherichia coli K-12 and B strains in high-glucose batch cultivations on process-, transcriptomeand proteome level. PLoS ONE 8, e70516 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Treloar, N. J., Fedorec, A. J. H., Ingalls, B. & Barnes, C. P. Deep reinforcement learning for the control of microbial co-cultures in bioreactors. PLOS Comput. Biol. 16, e1007783 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Kerner, A., Park, J., Williams, A. & Lin, X. N. A programmable Escherichia coli consortium via tunable symbiosis. PLoS ONE 7, e34032 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Shou, W., Ram, S. & Vilar, J. M. G. Synthetic cooperation in engineered yeast populations. Proc. Natl. Acad. Sci. USA 104, 1877–1882 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Pande, S. et al. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J 8, 953–962 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Yurtsev, E. A., Conwill, A. & Gore, J. Oscillatory dynamics in a bacterial crossprotection mutualism. Proc. Natl. Acad. Sci. USA 113, 6236–6241 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Hosoda, K. et al. Cooperative adaptation to establishment of a synthetic bacterial mutualism. PLoS ONE 6, e17105 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Zhang, X. & Reed, J. L. Adaptive evolution of synthetic cooperating communities improves growth performance. PLoS ONE 9, e108297 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 49.

    Chen, Y., Kim, J. K., Hirning, A. J., Josi, K. & Bennett, M. R. Emergent genetic oscillations in a synthetic microbial consortium. Science 349, 986–989 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Bernstein, H. C., Paulson, S. D. & Carlson, R. P. Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J. Biotechnol. 157, 159–166 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Scott, S. R. et al. A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis. Nat. Microbiol. 2, 17083 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Ziesack, M. et al. Engineered Interspecies amino acid cross-feeding increases population evenness in a synthetic bacterial consortium. mSystems 4, e00352–19 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Liao, M. J., Din, M. O., Tsimring, L. & Hasty, J. Rock-paper-scissors: engineered population dynamics increase genetic stability. Science 365, 1045–1049 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Ahn, J. et al. Human gut microbiome and risk for colorectal cancer. J. Natl Cancer Inst 105, 1907–1911 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Stokell, J. R. et al. Analysis of changes in diversity and abundance of the microbial community in a cystic fibrosis patient over a multiyear period. J. Clin. Microbiol. 53, 237–247 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Wang, X., Policarpio, L., Prajapati, D., Li, Z. & Zhang, H. Developing E. coli– E. coli co-cultures to overcome barriers of heterologous tryptamine biosynthesis. Metab. Eng. Commun. 10, e00110 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Yuan, S. F., Yi, X., Johnston, T. G. & Alper, H. S. De novo resveratrol production through modular engineering of an Escherichia coli–Saccharomyces cerevisiae co-culture. Microb. Cell Factor 19, 143 (2020).

    CAS  Article  Google Scholar 

  • 60.

    Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol 1, 109 (2017).

    PubMed  Article  Google Scholar 

  • 61.

    Carmona-Fontaine, C. & Xavier, J. B. Altruistic cell death and collective drug resistance. Molecular Systems Biology 8, 627 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Tanouchi, Y., Pai, A., Buchler, N. E. & You, L. Programming stress-induced altruistic death in engineered bacteria. Mol. Syst. Biol. 8, 626 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 63.

    Ackermann, M. et al. Self-destructive cooperation mediated by phenotypic noise. Nature 454, 987–990 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 64.

    Williams, G. T. Programmed cell death: a fundamental protective response to pathogens. Trends Microbiol 2, 463–464 (1994).

    CAS  PubMed  Article  Google Scholar 

  • 65.

    Calles, B., Goñi-Moreno, Á. & Lorenzo, V. Digitalizing heterologous gene expression in Gram-negative bacteria with a portable ON/OFF module. Mol. Syst. Biol. 15, e8777 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Fedorec, A., Karkaria, B., Sulu, M. & Barnes, C. Single strain control of microbial consortia. bioRxiv, https://doi.org/10.1101/2019.12.23.887331 (2019).

  • 67.

    Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L. & Lilley, A. K. The contribution of species richness and composition to bacterial services. Nature 436, 1157–1160 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 68.

    Hsu, R. H. et al. Venturelli. Microbial interaction network inference in microfluidic droplets. Cell Syst 9, 229–242.e4 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Doekes, H. M., De Boer, R. J. & Hermsen, R. Toxin production spontaneously becomes regulated by local cell density in evolving bacterial populations. PLoS Comput. Biol. 15, e1007333 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    McNaughton, S. J. Stability and diversity of ecological communities. Nature 274, 251–253 (1978).

    ADS  Article  Google Scholar 

  • 71.

    Sterner, R. W., Bajpai, A. & Adams, T. The enigma of food chain length: absence of theoretical evidence for dynamic constraints. Ecology 78, 2258–2262 (1997).

    Article  Google Scholar 

  • 72.

    Barabás, G., Michalska-Smith, M. J. & Allesina, S. Self-regulation and the stability of large ecological networks. Nat. Ecol. Evol. 1, 1870–1875 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 74.

    Tang, S., Pawar, S. & Allesina, S. Correlation between interaction strengths drives stability in large ecological networks. Ecol. Lett. 17, 1094–1100 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 75.

    Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Siek, J. G., Lee, L.-Q., Lumsdaine, A. The Boost Graph Library, 243 (Addison-Wesley, 2002).

  • 78.

    Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet  Google Scholar 

  • 79.

    Harper, M., et al. python-ternary: ternary plots in python. Zenodo https://doi.org/10.5281/zenodo.594435 (2019).

  • 80.

    Wickham, H. ggplot2-Positioning Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).

  • 81.

    Kylilis, N., Tuza, Z. A., Stan, G. B. & Polizzi, K. M. Tools for engineering coordinated system behaviour in synthetic microbial consortia. Nat. Commun. 9, 2677 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 82.

    Senn, H., Lendenmann, U., Snozzi, M., Hamer, G. & Egli, T. The growth of Escherichia coli in glucose-limited chemostat cultures: a re-examination of the kinetics. BBA—Gen. Subj. 1201, 424–436 (1994).

    Article  Google Scholar 

  • 83.

    Destoumieux-Garzón, D. The iron-siderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: role of the microcin Val11-Pro16 β-hairpin region in the recognition mechanism. Biochem. J. 389, 869–876 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  • 84.

    Kaur, K. et al. Characterization of a highly potent antimicrobial peptide microcin N from uropathogenic Escherichia coli. FEMS Microbiology Letters 363, fnw095 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 85.

    Andersen, K. B. & Meyenburg, K. V. Are growth rates of Escherichia coli in batch cultures limited by respiration? J. Bacteriol. 144, 114–123 (1980).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 86.

    Marenda, M., Zanardo, M., Trovato, A., Seno, F. & Squartini, A. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries. Sci. Rep. 6, 39142 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 87.

    Destoumieux-Garzón, D. et al. Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Mol. Microbiol. 49, 1031–1041 (2003).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 88.

    Karkaria, B. D., Fedorec, A. J. H. & Barnes, C. P. Automated design of synthetic microbial communities. Zenodo https://doi.org/10.5281/zenodo.4266261 (2020).


  • Source: Ecology - nature.com

    Mercury methylation by metabolically versatile and cosmopolitan marine bacteria

    3 Questions: Ernest Moniz on the future of climate and energy under the Biden-Harris administration