Prosser, J. I. & Nicol, G. W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ. Microbiol. 10, 2931–2941 (2008).
Google Scholar
Bernhard, A. E. & Bollmann, A. Estuarine nitrifiers: new players, patterns and processes. Estuar. Coast. Shelf Sci. 88, 1–11 (2010).
Google Scholar
Martiny, J. B. H., Eisen, J., Penn, K., Allison, S. D. & Horner-Devine, M. C. Drivers of bacterial beta-diversity depend on spatial scale. Proc. Natl Acad. Sci. USA 108, 7850–7854 (2011).
Nelson, M. B., Martiny, A. C. & Martiny, J. B. H. Global biogeography of microbial nitrogen-cycling traits in soil. Proc. Natl Acad. Sci. USA 113, 8033–8040 (2016).
Google Scholar
Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).
Google Scholar
Marton, J. M., Roberts, B. J., Bernhard, A. E. & Giblin, A. E. Spatial and temporal variability of nitrification potential and ammonia-oxidizer abundances in Louisiana salt marshes. Estuaries Coast. 38, 1824–1837 (2015).
Google Scholar
Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461, 976–981 (2009).
Google Scholar
Dimitri Kits, K. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).
Google Scholar
Hink, L., Nicol, G. W. & Prosser, J. I. Archaea produce lower yields of N<inf>2</inf>O than bacteria during aerobic ammonia oxidation in soil. Environ. Microbiol. 19, 4829–4837 (2017).
Google Scholar
Bernhard, A. E., Donn, T., Giblin, A. E. & Stahl, D. A. Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environ. Microbiol. 7, 1289–1297 (2005).
Google Scholar
Moin, N. S., Nelson, K. A., Bush, A. & Bernhard, A. E. Distribution and diversity of archaeal and bacterial ammonia oxidizers in salt marsh sediments. Appl. Environ. Microbiol. 75, 7461–7468 (2009).
Google Scholar
Bernhard, A. E. et al. Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates. Appl. Environ. Microbiol. 76, 1285–1289 (2010).
Google Scholar
Francis, C. A., O’Mullan, G. D. & Ward, B. B. Diversity of ammonia monooxygenase (amoA) genes across environmental gradients in Chesapeake Bay sediments. Geobiology 1, 129–140 (2003).
Google Scholar
Ward, B. B. et al. Ammonia-oxidizing bacterial community composition in estuarine and oceanic environments assessed using a functional gene microarray. Environ. Microbiol. 9, 2522–2538 (2007).
Google Scholar
Mills, H. J. et al. Characterization of nitrifying, denitrifying, and overall bacterial communities in permeable marine sediments of the northeastern Gulf of Mexico. Appl. Environ. Microbiol. 74, 4440–4453 (2008).
Google Scholar
Newell, S. E. et al. A shift in the archaeal nitrifier community in response to natural and anthropogenic disturbances in the northern Gulf of Mexico. Environ. Microbiol. Rep. 6, 106–112 (2014).
Google Scholar
Bernhard, A. E., Sheffer, R., Giblin, A. E., Marton, J. M. & Roberts, B. J. Population dynamics and community composition of ammonia oxidizers in salt marshes after the Deepwater Horizon oil spill. Front. Microbiol. 7, 854 (2016).
Google Scholar
Bernhard, A. E., Chelsky, A., Giblin, A. E. & Roberts, B. J. Influence of local and regional drivers on spatial and temporal variation of ammonia-oxidizing communities in Gulf of Mexico salt marshes. Environ. Microbiol. Rep. 11, 825–834 (2019).
Google Scholar
Nelson, K. A., Moin, N. S. & Bernhard, A. E. Archaeal diversity and the prevalence of Crenarchaeota in salt marsh sediments. Appl. Environ. Microbiol. 75, 4211–4215 (2009).
Google Scholar
Peng, X. et al. Differential responses of ammonia-oxidizing archaea and bacteria to long-term fertilization in a New England salt marsh. Front. Microbiol. 3, 445 (2012).
Google Scholar
Bernhard, A. E., Marshall, D. & Yiannos, L. Increased variability of microbial communities in restored salt marshes nearly 30 years after tidal flow restoration. Estuaries Coast. 35, 1049–1059 (2012).
Google Scholar
Marton, J. M. & Roberts, B. J. Spatial variability of phosphorus sorption dynamics in Louisiana salt marshes. J. Geophys. Res. Biogeosci. 119, 451–465 (2014).
Google Scholar
Hill, T. D. & Roberts, B. J. Effects of seasonality and environmental gradients on Spartina alterniflora allometry and primary production. Ecol. Evol. 7, 9676–9688 (2017).
Google Scholar
Bernhard, A. E., Tucker, J., Giblin, A. E. & Stahl, D. A. Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient. Environ. Microbiol. 9, 1439–1447 (2007).
Google Scholar
Schutte, C. A., Marton, J. M., Bernhard, A. E., Giblin, A. E. & Roberts, B. J. No evidence for long-term impacts of oil spill contamination on salt marsh soil nitrogen cycling processes. Estuaries Coast. 43, 865–879 (2020).
Google Scholar
Bernhard, A. E., Dwyer, C., Idrizi, A., Bender, G. & Zwick, R. Long-term impacts of disturbance on nitrogen-cycling bacteria in a New England salt marsh. Front. Microbiol. 6 https://doi.org/10.3389/fmicb.2015.00046 (2015).
Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8 https://doi.org/10.3389/fmicb.2017.01508 (2017).
Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E. & Oakley, B. B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl Acad. Sci. USA 102, 14683–14688 (2005).
Google Scholar
Park, S.-J., Park, B.-J. & Rhee, S.-K. Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles 12, 605–615 (2008).
Google Scholar
Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).
Google Scholar
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
Google Scholar
Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
Turner, R. E., Rabalais, N. N. & Justic, D. Predicting summer hypoxia in the northern Gulf of Mexico: riverine N, P, and Si loading. Mar. Pollut. Bull. 52, 139–148 (2006).
Google Scholar
Tian, H. et al. Long-term trajectory of nitrogen loading and delivery from Mississippi river basin to the Gulf of Mexico. Glob. Biogeochem. Cycles 34, 6475 (2020).
Google Scholar
Dang, H. et al. Diversity, abundance, and spatial distribution of sedimet ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Appl. Environ. Microbiol. 76, 4691–4702 (2010).
Google Scholar
Sims, A., Zhang, Y., Gajaraj, S., Brown, P. B. & Hu, Z. Toward the development of microbial indicators for wetland assessment. Water Res. 47, 1711–1725 (2013).
Google Scholar
Zhang, Q. -F. et al. Impacts of Spartina alterniflora invasion on abundance and composition of ammonia oxidizers in estuarine sediment. J. Soils Sediment. 11, 1020–1031 (2011).
Google Scholar
Jin, T. et al. Diversity and quantity of ammonia-oxidizing archaea and bacteria in sediment of the Pearl River Estuary, China. Appl. Microbiol. Biotechnol. 90, 1137–1145 (2011).
Google Scholar
Meinhardt, K. A. et al. Evaluation of revised polymerase chain reaction primers for more inclusive quantification of ammonia-oxidizing archaea and bacteria. Environ. Microbiol. Rep. 7, 354–363 (2015).
Google Scholar
Marshall, A. et al. Primer selection influences abundance estimates of ammonia oxidizing archaea in coastal marine sediments. Mar. Environ. Res. 140, 90–95 (2018).
Google Scholar
Koops, H. P. & Pommerening-Roser, A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol. Ecol. 37, 1–9 (2001).
Google Scholar
Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).
Google Scholar
Pommier, T. et al. Global patterns of diversity and community structure in marine bacterioplankton. Mol. Ecol. 16, 867–880 (2007).
Google Scholar
Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. 103, 626–631 (2006).
Google Scholar
Hendershot, J. N., Read, Q. D., Henning, J. A., Sanders, N. J. & Classen, A. T. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology 98, 1757–1763 (2017).
Google Scholar
Hitchcock, J. N., Mitrovic, S. M., Kobayashi, T. & Westhorpe, D. P. Responses of estuarine bacterioplankton, phytoplankton and zooplankton to dissolved organic carbon (DOC) and inorganic nutrient additions. Estuaries Coast. 33, 78–91 (2010).
Google Scholar
Guo, X. -P. et al. Bacterial community structure in response to environmental impacts in the intertidal sediments along the Yangtze Estuary, China. Mar. Pollut. Bull. 126, 141–149 (2018).
Google Scholar
Howarth, R. W. Nutrient limitation of net primary production in marine ecosystems. Annu. Rev. Ecol. 19, 89–110 (1988).
Google Scholar
Murrell, M. C. et al. Evidence that phosphorus limits phytoplankton growth in a Gulf of Mexico estuary: Pensacola Bay, Florida, USA. Bull. Mar. Sci. 70, 155–167 (2002).
Johnson, M. W., Heck, K. L. Jr & Fourqurean, J. W. Nutrient content of seagrasses and epiphytes in the northern Gulf of Mexico: evidence of phosphorus and nitrogen limitation. Aquat. Bot. 85, 103–111 (2006).
Google Scholar
Rysgaard, S., Thastum, P., Dalsgaard, T., Christensen, P. B. & Sloth, N. P. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries 22, 21–30 (1999).
Google Scholar
Peng, X. et al. Long-term fertilization alters the relative importance of nitrate reduction pathways in salt marsh sediments. J. Geophys. Res. Biogeosci. 121, 2082–2095 (2016).
Google Scholar
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Google Scholar
Taylor, A. E., Giguere, A. T., Zoebelein, C. M., Myrold, D. D. & Bottomley, P. J. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria. ISME J. 11, 896–908 (2017).
Google Scholar
Ouyang, Y., Norton, J. M. & Stark, J. M. Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil. Soil Biol. Biochem. 113, 161–172 (2017).
Google Scholar
Mukhtar, H., Lin, Y. -P., Lin, C. -M. & Lin, Y. -R. Relative abundance of ammonia oxidizing archaea and bacteria influences soil nitrification responses to temperature. Microorganisms 7, 526 (2019).
Fierer, N., Carney, K. M., Horner-Devine, M. C. & Megonigal, J. P. The biogeography of ammonia-oxidizing bacterial communities in soil. Microb. Ecol. 58, 435–445 (2009).
Google Scholar
Park, H.-D., Lee, S.-Y. & Hwang, S. Redundancy analysis demonstration of the relevance of temperature to ammonia-oxidizing bacterial community compositions in a full-scale nitrifying bioreactor treating saline wastewater. J. Microbiol. Biotechnol. 19, 346–350 (2009).
Google Scholar
Avrahami, S., Liesack, W. & Conrad, R. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ. Microbiol. 5, 691–705 (2003).
Google Scholar
Avrahami, S. & Conrad, R. Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl. Environ. Microbiol. 69, 6152–6164 (2003).
Google Scholar
Seitzinger, S. P., Gardner, W. S. & Spratt, A. K. The effect of salinity on ammonium sorption in aquatic sediments—implications for benthic nutrient recycling. Estuaries 14, 167–174 (1991).
Google Scholar
Dollhopf, S. L. et al. Quantification of ammonia-oxidizing bacteria and factors controlling nitrification in salt marsh sediments. Appl. Environ. Microbiol. 71, 240–246 (2005).
Google Scholar
Beman, J. M., Bertics, V. J., Braunschweiler, T. & Wilson, J. M. Quantification of ammonia oxidation rates and the distribution of ammonia-oxidizing archaea and bacteria in marine sediment depth profiles from Catalina Island, California. Front. Microbiol. 3, 263 (2012).
Google Scholar
Nicol, G. W., Leininger, S., Schleper, C. & Prosser, J. I. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 10, 2966–2978 (2008).
Google Scholar
Lehtovirta, L. E., Prosser, J. I. & Nicol, G. W. Soil pH regulates the abundance and diversity of group 1.1c Crenarchaeota. FEMS Microbiol. Ecol. 70, 367–376 (2009).
Google Scholar
Bello, M. O., Thion, C., Gubry-Rangin, C. & Prosser, J. I. Differential sensitivity of ammonia oxidising archaea and bacteria to matric and osmotic potential. Soil Biol. Biochem. 129, 184–190 (2019).
Google Scholar
Fuchslueger, L. et al. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland. Biogeosciences. 11, 6003–6015 (2014).
Google Scholar
Thion, C. & Prosser, J. I. Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. FEMS Microbiol. Ecol. 90, 380–389 (2014).
Google Scholar
Fowler, S. J., Palomo, A., Dechesne, A., Mines, P. D. & Smets, B. F. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ. Microbiol. 20, 1002–1015 (2018).
Google Scholar
How, S. W., Chua, A. S. M., Ngoh, G. C., Nittami, T. & Curtis, T. P. Enhanced nitrogen removal in an anoxic-oxic-anoxic process treating low COD/N tropical wastewater: low-dissolved oxygen nitrification and utilization of slowly-biodegradable COD for denitrification. Sci. Total Environ. 693, 133526 (2019).
Google Scholar
Gonzalez-Martinez, A., Rodriguez-Sanchez, A., van Loosdrecht, M. C. M., Gonzalez-Lopez, J. & Vahala, R. Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing. Environ. Sci. Pollut. Res. 23, 25501–25511 (2016).
Google Scholar
Wang, D. -Q., Zhou, C. -H., Nie, M., Gu, J. -D. & Quan, Z. -X. Abundance and niche specificity of different types of complete ammonia oxidizers (comammox) in salt marshes covered by different plants. Sci. Total Environ. 768, 144933 (2021).
Xia, F. et al. Ubiquity and diversity of complete ammonia oxidizers (comammox). Appl. Environ. Microbiol. 84, e01390 (2018).
Google Scholar
Yu, C. et al. Evidence for complete nitrification in enrichment culture of tidal sediments and diversity analysis of clade a comammox Nitrospira in natural environments. Appl. Microbiol. Biotechnol. 102, 9363–9377 (2018).
Google Scholar
Zhao, Z. et al. Abundance and community composition of comammox bacteria in different ecosystems by a universal primer set. Sci. Total Environ. 691, 146–155 (2019).
Google Scholar
Source: Ecology - nature.com