Zoumis T, Schmidt A, Grigorova L, Calmano W. Contaminants in sediments: remobilisation and demobilisation. Sci Total Environ. 2001;266:195–202.
SØNdergaard M, Jeppesen E, Lauridsen TL, Skov C, Van Nes EH, Roijackers R, et al. Lake restoration: successes, failures and long-term effects. J Appl Ecol. 2007;44:1095–105.
Zhao CS, Yang Y, Yang ST, Xiang H, Wang F, Chen X, et al. Impact of spatial variations in water quality and hydrological factors on the food-web structure in urban aquatic environments. Water Res. 2019;153:121–33.
Wang C, Zhai W, Shan B. Oxygen microprofile in the prepared sediments and its implication for the sediment oxygen consuming process in a heavily polluted river of China. Environ Sci Pollut Res Int. 2016;23:8634–43.
Liu B, Han RM, Wang WL, Yao H, Zhou F. Oxygen microprofiles within the sediment-water interface studied by optode and its implication for aeration of polluted urban rivers. Environ Sci Pollut Res Int. 2017;24:9481–94.
Rysgaard S, Risgaard-Petersen N, Sloth NP, Jensen K, Nielsen LP. Oxygen regulation of nitrification and denitrification in sediments. Limnol Oceanogr. 2003;39:1643–52.
Broman E, Sachpazidou V, Pinhassi J, Dopson M. Oxygenation of hypoxic coastal Baltic Sea sediments impacts on chemistry, microbial community composition, and metabolism. Front Microbiol. 2017;8:2453–2453.
Zheng B, Wang L, Liu L. Bacterial community structure and its regulating factors in the intertidal sediment along the Liaodong Bay of Bohai Sea, China. Microbiol Res. 2014;169:585–92.
Yu P, Wang J, Chen J, Guo J, Yang H, Chen Q. Successful control of phosphorus release from sediments using oxygen nano-bubble-modified minerals. Sci Total Environ. 2019;663:654–61.
Papageorgiou N, Kalantzi I, Karakassis I. Effects of fish farming on the biological and geochemical properties of muddy and sandy sediments in the Mediterranean Sea. Mar Environ Res. 2010;69:326–36.
Pfeffer C, Larsen S, Song J, Dong MD, Besenbacher F, Meyer RL, et al. Filamentous bacteria transport electrons over centimetre distances. Nature. 2012;491:218–21.
Nielsen LP, Risgaard-Petersen N. Rethinking sediment biogeochemistry after the discovery of electric currents. Annu Rev Mar Sci. 2015;7:425–42.
Burdorf LDW, Tramper A, Seitaj D, Meire L, Hidalgo-Martinez S, Zetsche E-M, et al. Long-distance electron transport occurs globally in marine sediments. Biogeosciences. 2017;14:683–701.
Sandfeld T, Marzocchi U, Petro C, Schramm A, Risgaard-Petersen N. Electrogenic sulfide oxidation mediated by cable bacteria stimulates sulfate reduction in freshwater sediments. ISME J. 2020;14:1233–46.
Muller H, Bosch J, Griebler C, Damgaard LR, Nielsen LP, Lueders T, et al. Long-distance electron transfer by cable bacteria in aquifer sediments. ISME J. 2016;10:2010–9.
Malkin SY, Rao AM, Seitaj D, Vasquez-Cardenas D, Zetsche EM, Hidalgo-Martinez S, et al. Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor. ISME J. 2014;8:1843–54.
Rao AMF, Malkin SY, Hidalgo-Martinez S, Meysman FJR. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment. Geochim et Cosmochim Acta. 2016;172:265–86.
Marzocchi U, Palma E, Rossetti S, Aulenta F, Scoma A. Parallel artificial and biological electric circuits power petroleum decontamination: the case of snorkel and cable bacteria. Water Res. 2020;173:115520.
Kjeldsen KU, Schreiber L, Thorup CA, Boesen T, Bjerg JT, Yang T, et al. On the evolution and physiology of cable bacteria. Proc Natl Acad Sci USA. 2019;116:19116–25.
Schauer R, Risgaard-Petersen N, Kjeldsen KU, Bjerg JJT, Jorgensen BB, Schramm A, et al. Succession of cable bacteria and electric currents in marine sediment. ISME J. 2014;8:1314–22.
Burdorf LDW, Malkin SY, Bjerg JT, van Rijswijk P, Criens F, Tramper A, et al. The effect of oxygen availability on long-distance electron transport in marine sediments. Limnol Oceanogr. 2018;63:1799–816.
Zhou J, Deng Y, Luo F, He Z, Yang Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. mBio. 2011;2:e00122-11.
Faust K, Raes J. Microbial interactions: from networks to model. Nat Rev Microbiol. 2012;10:538–50.
Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X. Functional molecular ecological networks. mBio. 2010;1:e00169–110.
Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.
Tu Q, Yan Q, Deng Y, Michaletz ST, Buzzard V, Weiser MD, et al. Biogeographic patterns of microbial co-occurrence ecological networks in six American forests. Soil Biol Biochem. 2020;148:107897.
Hu A, Ju F, Hou L, Li J, Yang X, Wang H, et al. Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community. Environ Microbiol. 2017;19:4993–5009.
Deng Y, Jiang YH, Yang Y, He Z, Luo F, Zhou J. Molecular ecological network analyses. BMC Bioinform. 2012;13:113.
Kruskal JB. Nonmetric multidimensional scaling: a numerical method. Psychometrika. 1964;29:115–29.
Guo X, Feng J, Shi Z, Zhou X, Yuan M, Tao X, et al. Climate warming leads to divergent succession of grassland microbial communities. Nat Clim Change. 2018;8:813–8.
Legendre P, Legendre LF. Numerical ecology. 3rd ed. Oxford, UK: Elsevier; 2012.
van den Wollenberg AL. Redundancy analysis an alternative for canonical correlation analysis. Psychometrika. 1977;42:207–19.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. https://www.R-project.org/.
Goslee SC, Urban DL. The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw. 2007;22:1–19.
Luo Y, Hui D, Zhang D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology. 2006;87:53–63.
Scholz VV, Meckenstock RU, Nielsen LP, Risgaard-Petersen N. Cable bacteria reduce methane emissions from rice-vegetated soils. Nat Commun. 2020;11:1878.
Risgaard-Petersen N, Kristiansen M, Frederiksen RB, Dittmer AL, Bjerg JT, Trojan D, et al. Cable bacteria in freshwater sediments. Appl Environ Microbiol. 2015;81:6003–11.
Coates JD, Anderson RT, Lovley DR. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl Environ Microbiol. 1996;62:1099–101.
Coates JD, Chakraborty R, McInerney MJ. Anaerobic benzene biodegradation—a new era. Res Microbiol. 2002;153:621–8.
Matturro B, Cruz Viggi C, Aulenta F, Rossetti S. Cable bacteria and the bioelectrochemical snorkel: the natural and engineered facets playing a role in hydrocarbons degradation in marine sediments. Front Microbiol. 2017;8:952.
Huisingh J, McNeill JJ, Matrone G. Sulfate reduction by a Desulfovibrio species isolated from sheep rumen. Appl Microbiol. 1974;28:489–97.
Gupta A, Dutta A, Sarkar J, Panigrahi MK, Sar P. Low-abundance members of the Firmicutes facilitate bioremediation of soil impacted by highly acidic mine drainage from the Malanjkhand Copper Project, India. Front Microbiol. 2018;9:2882–2882.
Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol. 2017;8:682–682.
Coates JD, Councell T, Ellis DJ, Lovley DR. Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism. Anaerobe. 1998;4:277–82.
Caccavo F Jr., Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol. 1994;60:3752–9.
Loesche WJ. Oxygen sensitivity of various anaerobic bacteria. Appl Microbiol. 1969;18:723–7.
Duncan SH, Louis P, Thomson JM, Flint HJ. The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol. 2009;11:2112–22.
Borin S, Brusetti L, Mapelli F, D’Auria G, Brusa T, Marzorati M, et al. Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. Proc Natl Acad Sci USA. 2009;106:9151–6.
Yun Y, Wang H, Man B, Xiang X, Zhou J, Qiu X, et al. The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification. Front Microbiol. 2016;7:1955–1955.
Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ. Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol. 2004;54:1483–7.
Rodriguez-Conde S, Molina L, González P, García-Puente A, Segura A. Degradation of phenanthrene by Novosphingobium sp. HS2a improved plant growth in PAHs-contaminated environments. Appl Microbiol Biotechnol. 2016;100:10627–36.
Sha S, Zhong J, Chen B, Lin L, Luan T. Novosphingobium guangzhouense sp. nov., with the ability to degrade 1-methylphenanthrene. Int J Syst Evolut Microbiol. 2017;67:489–97.
Ghosal D, Ghosh S, Dutta TK, Ahn Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol. 2016;7:1369.
Yan Z, Zhang Y, Wu H, Yang M, Zhang H, Hao Z, et al. Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation. RSC Adv. 2017;7:46690–8.
Weiss JV, Rentz JA, Plaia T, Neubauer SC, Merrill-Floyd M, Lilburn T, et al. Characterization of neutrophilic Fe(II)-oxidizing bacteria isolated from the rhizosphere of wetland plants and description of Ferritrophicum radicicola gen. nov. sp. nov., and Sideroxydans paludicola sp. nov. Geomicrobiol J. 2007;24:559–70.
Lenchi N, Inceoğlu O, Kebbouche-Gana S, Gana ML, Llirós M, Servais P, et al. Diversity of microbial communities in production and injection waters of Algerian oilfields revealed by 16S rRNA gene Amplicon 454 pyrosequencing. PLoS ONE. 2013;8:e66588.
Nogales B, Moore ER, Llobet-Brossa E, Rossello-Mora R, Amann R, Timmis KN. Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol. 2001;67:1874–84.
Xu P, Xiao E, Zeng L, He F, Wu Z. Enhanced degradation of pyrene and phenanthrene in sediments through synergistic interactions between microbial fuel cells and submerged macrophyte Vallisneria spiralis. J Soils Sediment. 2019;19:2634–49.
Singleton DR, Jones MD, Richardson SD, Aitken MD. Pyrosequence analyses of bacterial communities during simulated in situ bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Appl Microbiol Biotechnol. 2013;97:8381–91.
Lu XY, Zhang T, Fang HH. Bacteria-mediated PAH degradation in soil and sediment. Appl Microbiol Biotechnol. 2011;89:1357–71.
Wang C, Huang Y, Zhang Z, Wang H. Salinity effect on the metabolic pathway and microbial function in phenanthrene degradation by a halophilic consortium. AMB Express. 2018;8:67.
Dastgheib SM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A. Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol. 2012;95:789–98.
Vasquez-Cardenas D, van de Vossenberg J, Polerecky L, Malkin SY, Schauer R, Hidalgo-Martinez S, et al. Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments. ISME J. 2015;9:1966–78.
Wasmund K, Cooper M, Schreiber L, Lloyd KG, Baker BJ, Petersen DG, et al. Single-cell genome and group-specific dsrAB sequencing implicate marine members of the class Dehalococcoidia (phylum Chloroflexi) in sulfur cycling. mBio. 2016;7:e00266-16.
Liang B, Wang L-Y, Mbadinga SM, Liu J-F, Yang S-Z, Gu J-D, et al. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express. 2015;5:117–117.
Logan BE, Rossi R, Ragab AA, Saikaly PE. Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol. 2019;17:307–19.
Pisciotta JM, Zaybak Z, Call DF, Nam J-Y, Logan BE. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl Environ Microbiol. 2012;78:5212–9.
Wang B, Zhang H, Yang Y, Xu M. Diffusion and filamentous bacteria jointly govern the spatiotemporal process of sulfide removal in sediment microbial fuel cells. Chem Eng J. 2021;405:126680.
Li X, Li Y, Zhang X, Zhao X, Sun Y, Weng L, et al. Long-term effect of biochar amendment on the biodegradation of petroleum hydrocarbons in soil microbial fuel cells. Sci Total Environ. 2019;651:796–806.
Malvankar NS, King GM, Lovley DR. Centimeter-long electron transport in marine sediments via conductive minerals. ISME J. 2015;9:527–31.
Bjerg JT, Boschker HTS, Larsen S, Berry D, Schmid M, Millo D, et al. Long-distance electron transport in individual, living cable bacteria. Proc Natl Acad Sci USA. 2018;115:5786–91.
Meysman FJR, Cornelissen R, Trashin S, Bonné R, Martinez SH, van der Veen J, et al. A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria. Nat Commun. 2019;10:4120.
Teske A. Cable bacteria, living electrical conduits in the microbial world. Proc Natl Acad Sci USA. 2019;116:18759.
Risgaard-Petersen N, Revil A, Meister P, Nielsen LP. Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment. Geochim et Cosmochim Acta. 2012;92:1–13.
Risgaard-Petersen N, Damgaard LR, Revil A, Nielsen LP. Mapping electron sources and sinks in a marine biogeobattery. J Geophys Res Biogeosci. 2014;119:1475–86.
Source: Ecology - nature.com