in

Global maps of twenty-first century forest carbon fluxes

[adace-ad id="91168"]
  • 1.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  • 2.

    IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (IPCC, 2019).

  • 3.

    Adoption of the Paris Agreement FCCC/CP/2015/10/Add.1 (UNFCCC, 2015).

  • 4.

    Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. New anthropogenic land use estimates for the Holocene: HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).

    Article  Google Scholar 

  • 5.

    Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Philos. Trans. R. Soc. B 375, 20190126 (2020).

    CAS  Article  Google Scholar 

  • 6.

    Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    Article  Google Scholar 

  • 7.

    Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).

    CAS  Article  Google Scholar 

  • 8.

    Hansis, E., Davis, S. J. & Pongratz, J. Relevance of methodological choices for accounting of land use change carbon fluxes. Glob. Biogeochem. Cycles 29, 1230–1246 (2015).

    CAS  Article  Google Scholar 

  • 9.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  Article  Google Scholar 

  • 10.

    IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (eds Eggleston, S. et al.) (IGES, 2006).

  • 11.

    IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (eds Buendia, E. C. et al.) (IPCC, 2019).

  • 12.

    Grassi, G. et al. Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nat. Clim. Change 8, 914–920 (2018).

    CAS  Article  Google Scholar 

  • 13.

    Lee, D., Llopis, P., Waterworth, R., Roberts, G. & Pearson, T. Approaches to REDD+ Nesting: Lessons Learned from Country Experiences (World Bank, 2018).

  • 14.

    Streck, C. et al. Options for Enhancing REDD+ Collaboration in the Context of Article 6 of the Paris Agreement (Meridian Institute, 2017).

  • 15.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  Article  Google Scholar 

  • 16.

    World Database on Protected Areas User Manual (UNEP, 2016); https://www.protectedplanet.net/en/resources/wdpa-manual

  • 17.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS  Article  Google Scholar 

  • 18.

    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).

    CAS  Article  Google Scholar 

  • 19.

    PRODES Deforestation (INPE, 2019); http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes

  • 20.

    Ogle, S. M.et al. Delineating managed land for reporting national greenhouse gas emissions and removals to the United Nations framework convention on climate change. Carbon Balance Manag. 13, 9 (2018).

  • 21.

    Pearson, T. R., Brown, S., Murray, L. & Sidman, G. Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon Balance Manag. 12, 3 (2017).

    Article  Google Scholar 

  • 22.

    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

    Article  Google Scholar 

  • 23.

    Van Der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    Article  Google Scholar 

  • 24.

    Kirschbaum, M. U., Zeng, G., Ximenes, F., Giltrap, D. L. & Zeldis, J. R. Towards a more complete quantification of the global carbon cycle. Biogeosciences 16, 831–846 (2019).

  • 25.

    Global Forest Observations Initiative. Integration of Remote-sensing and Ground-based Observations for Estimation of Emissions and Removals of Greenhouse Gases in Forests 2nd edn (FAO, 2016).

  • 26.

    Potapov, P. et al. Annual continuous fields of woody vegetation structure in the Lower Mekong region from 2000–2017 Landsat time-series. Remote Sens. Environ. 232, 111278 (2019).

    Article  Google Scholar 

  • 27.

    Federici, S., Lee, D. & Herold, M. Forest Mitigation: A Permanent Contribution to the Paris Agreement? (Climate and Land Use Alliance, 2017).

  • 28.

    Romijn, E. et al. Assessing change in national forest monitoring capacities of 99 tropical countries. Ecol. Manag. 352, 109–123 (2015).

    Article  Google Scholar 

  • 29.

    Cook-Patton, S. Mapping potential carbon capture from global natural forest regrowth. Nature 585, 545–550 (2020).

    CAS  Article  Google Scholar 

  • 30.

    The Global Stocktake (UNFCCC, 2015); https://unfccc.int/topics/science/workstreams/global-stocktake-referred-to-in-article-14-of-the-paris-agreement

  • 31.

    Austin, K. et al. Shifting patterns of oil palm driven deforestation in Indonesia and implications for zero-deforestation commitments. Land Use Policy 69, 41–48 (2017).

    Article  Google Scholar 

  • 32.

    Gaveau, D. L. et al. Four decades of forest persistence, clearance and logging on Borneo. PLoS ONE 9, e101654 (2014).

    Article  Google Scholar 

  • 33.

    Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016).

    Article  Google Scholar 

  • 34.

    Gunarso, P., Hartoyo, M., Agus, F. & Killeen, T. in Reports from the Technical Panels of the 2nd Greenhouse Gas Working Group of the Roundtable on Sustainable Palm Oil (eds Killeen, T. J. & Goon, J.) 29–64 (RSPO, 2013).

  • 35.

    Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).

    Article  Google Scholar 

  • 36.

    Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45 (2019).

    CAS  Article  Google Scholar 

  • 37.

    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).

    CAS  Article  Google Scholar 

  • 38.

    Zarin, D. J. et al. Can carbon emissions from tropical deforestation drop by 50% in 5 years? Glob. Change Biol. 22, 1336–1347 (2016).

    Article  Google Scholar 

  • 39.

    Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root: shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).

    Article  Google Scholar 

  • 40.

    IPCC Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (eds Hiraishi, T. et al.) (IPCC, 2014).

  • 41.

    Methodological Tool: Estimation of Carbon Stocks and Change in Carbon Stocks in Dead Wood and Litter in A/R CDM Project Activities (UNFCCC, 2013); https://cdm.unfccc.int/methodologies/ARmethodologies/tools/ar-am-tool-12-v3.0.pdf

  • 42.

    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article  Google Scholar 

  • 43.

    Sanderman, J. et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 13, 055002 (2018).

    Article  Google Scholar 

  • 44.

    Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L. & Justice, C. O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 217, 72–85 (2018).

    Article  Google Scholar 

  • 45.

    Global Ecological Zones for FAO Forest Reporting: 2010 Update (FAO, 2012).

  • 46.

    Brus, D. et al. Statistical mapping of tree species over Europe. Eur. J. Res. 131, 145–157 (2012).

    Article  Google Scholar 

  • 47.

    Del Lungo, A., Ball, J. & Carle, J. Global Planted Forests Thematic Study: Results and Analysis (FAO, 2006); http://www.fao.org/forestry/12139-03441d093f070ea7d7c4e3ec3f306507.pdf

  • 48.

    Portugal National Greenhouse Gas Inventory submitted to the UNFCCC, 1990–2018 (UNFCCC, 2020).

  • 49.

    Harris, N. L., Goldman, E. D. & Gibbes, S. Spatial Database on Planted Trees Version 1.0 https://www.wri.org/publication/spatialdatabase-planted-trees (WRI, 2019).

  • 50.

    Smith, J. E., Heath, L. S., Skog, K. E. & Birdsey, R. A. Methods for Calculating Forest Ecosystem and Harvested Carbon with Standard Estimates for Forest Types of the United States General Technical Report (USDA, Forest Service, 2006); https://doi.org/10.2737/NE-GTR-343

  • 51.

    Ruefenacht, B. et al. Conterminous US and Alaska forest type mapping using forest inventory and analysis data. Photogramm. Eng. Remote Sensing 74, 1379–1388 (2008).

    Article  Google Scholar 

  • 52.

    Pan, Y. et al. Age structure and disturbance legacy of North American forests. Biogeosciences 8, 715–732 (2011) .

    Article  Google Scholar 

  • 53.

    Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).

    Article  Google Scholar 

  • 54.

    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

    Article  Google Scholar 

  • 55.

    Roman-Cuesta, R. M. et al. Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics. Biogeosciences 13, 4253–4269 (2016).

    CAS  Article  Google Scholar 

  • 56.

    Carter, S. et al. Agriculture-driven deforestation in the tropics from 1990–2015: emissions, trends and uncertainties. Environ. Res. Lett. 13, 014002 (2017).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Could lab-grown plant tissue ease the environmental toll of logging and agriculture?

    How to get more electric cars on the road