in

Capital-income breeding in wild boar: a comparison between two sexes

  • 1.

    Bednekoff, P. A. Life histories and Predation risk. In Encyclopedia of Animal Behavior 283–287 (Elsevier, Amsterdam, 2010).

    Google Scholar 

  • 2.

    Jönsson, K. I. Capital and income breeding as alternative tactics of resource use in reproduction. Oikos 78, 57 (1997).

    Article  Google Scholar 

  • 3.

    Stephens, P. A., Boyd, I. L., McNamara, J. M. & Houston, A. I. Capital breeding and income breeding: their meaning, measurement, and worth. Ecology 90, 2057–2067 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Kerby, J. & Post, E. Capital and income breeding traits differentiate trophic match–mismatch dynamics in large herbivores. Philos. Trans. R. Soc. B 368, 20120484 (2013).

    Article  Google Scholar 

  • 5.

    Williams, C. T. et al. Seasonal reproductive tactics: annual timing and the capital-to-income breeder continuum. Philos. Trans. R. Soc. B 372, 20160250 (2017).

    Article  Google Scholar 

  • 6.

    Apollonio, M. et al. Capital-income breeding in male ungulates: Causes and consequences of strategy differences among species. Front. Ecol. Evol. 8, 308 (2020).

    Article  Google Scholar 

  • 7.

    Brivio, F., Grignolio, S. & Apollonio, M. To feed or not to feed? Testing different hypotheses on rut-induced hypophagia in a mountain ungulate. Ethology 116, 406–415 (2010).

    Article  Google Scholar 

  • 8.

    Corlatti, L. & Bassano, B. Contrasting alternative hypotheses to explain rut-induced hypophagia in territorial male chamois. Ethology 120, 32–41 (2014).

    Article  Google Scholar 

  • 9.

    Miquelle, D. G. Why don’t bull moose eat during the rut?. Behav. Ecol. Sociobiol. 27, 145–151 (1990).

    Article  Google Scholar 

  • 10.

    Apollonio, M. & Di Vittorio, I. Feeding and reproductive behaviour in fallow bucks (Dama dama). Naturwissenschaften 91, 579–584 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Mysterud, A., Langvatn, R. & Stenseth, N. C. Patterns of reproductive effort in male ungulates. J. Zool. 264, 209–215 (2004).

    Article  Google Scholar 

  • 12.

    Coltman, D. W., Festa-Bianchet, M., Jorgenson, J. T. & Strobeck, C. Age-dependent sexual selection in bighorn rams. Proc. R. Soc. Lond. B 269, 165–172 (2002).

    CAS  Article  Google Scholar 

  • 13.

    Apollonio, M., Brivio, F., Rossi, I., Bassano, B. & Grignolio, S. Consequences of snowy winters on male mating strategies and reproduction in a mountain ungulate. Behav. Process. 98, 44–50 (2013).

    Article  Google Scholar 

  • 14.

    Mysterud, A., Solberg, E. J. & Yoccoz, N. G. Ageing and reproductive effort in male moose under variable levels of intrasexual competition. J. Anim. Ecol. 74, 742–754 (2005).

    Article  Google Scholar 

  • 15.

    Garel, M. et al. Sex-specific growth in Alpine Chamois. J. Mammal. 90, 954–960 (2009).

    Article  Google Scholar 

  • 16.

    Mason, T. H. E. et al. Contrasting life histories in neighbouring populations of a large mammal. PLoS ONE 6, e28002 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Dardaillon, M. Le sanglier et le milieu Camarguais: Dynamique Coadaptative. (1984).

  • 18.

    Spitz, F., Valet, G. & Lehr Brisbin, I. Variation in body mass of wild boars from southern France. J. Mammal. 79, 251–259 (1998).

    Article  Google Scholar 

  • 19.

    Servanty, S., Gaillard, J., Toïgo, C., Brandt, S. & Baubet, E. Pulsed resources and climate-induced variation in the reproductive traits of wild boar under high hunting pressure. J. Anim. Ecol. 78, 1278–1290 (2009).

    Article  Google Scholar 

  • 20.

    Gamelon, M. et al. Fluctuating food resources influence developmental plasticity in wild boar. Biol. Lett. 9, 20130419 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Frauendorf, M., Gethöffer, F., Siebert, U. & Keuling, O. The influence of environmental and physiological factors on the litter size of wild boar (Sus scrofa) in an agriculture dominated area in Germany. Sci. Total Environ. 541, 877–882 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Gamelon, M. et al. Reproductive allocation in pulsed-resource environments: a comparative study in two populations of wild boar. Oecologia 183, 1065–1076 (2017).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Massei, G., Genov, P. V. & Staines, B. W. Diet, food availability and reproduction of wild boar in a Mediterranean coastal area. Acta Theriol. (Warsz.) 41, 307–320 (1996).

    Article  Google Scholar 

  • 24.

    Schley, L. & Roper, T. J. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mamm. Rev. 33, 43–56 (2003).

    Article  Google Scholar 

  • 25.

    Canu, A. et al. Reproductive phenology and conception synchrony in a natural wild boar population. Hystrix 26, 77–84 (2015).

    Google Scholar 

  • 26.

    Allen, J. A. The influence of physical conditions in the genesis of species. Radic. Rev. 1, 108–140 (1877).

    Google Scholar 

  • 27.

    Fernández-Llario, P., Carranza, J. & De Trucios, S. H. Social organization of the wild boar (Sus scrofa) in Doñana National Park. Misc. Zool. 19, 9–18 (1996).

    Google Scholar 

  • 28.

    Bywater, K. A., Apollonio, M., Cappai, N. & Stephens, P. A. Litter size and latitude in a large mammal: the wild boar Sus scrofa. Mamm. Rev. 40, 212–220 (2010).

    Google Scholar 

  • 29.

    Merta, D., Mocała, P., Pomykacz, M. & Frąckowiak, W. Autumn-winter diet and fat reserves of wild boars (Sus scrofa) inhabiting forest and forest-farmland environment in south-western Poland. J. Vertebr. Biol. 63, 95–102 (2014).

    Google Scholar 

  • 30.

    Ježek, M., Štípek, K., Kušta, T., Červený, J. & Vícha, J. Reproductive and morphometric characteristics of wild boar (Sus scrofa) in the Czech Republic. J. For. Sci. 57, 285–292 (2011).

    Article  Google Scholar 

  • 31.

    Markina, F. A., Cortezo, R. G. & Gómez, C.S.-R. Physical development of wild boar in the Cantabric Mountains, Álava, Nothern Spain. Galemys Bol. Inf Soc. Esp. Para Conserv. Estud. Los Mamíferos 16, 25–34 (2004).

    Google Scholar 

  • 32.

    Gallo Orsi, U., Macchi, E., Perrone, A. & Durio, P. Biometric data and growth rates of a wild boar population living in the Italian Alps. J. Mt. Ecol. 3, 60–63 (1995).

    Google Scholar 

  • 33.

    Pedone, P., Mattioli, S. & Mattioli, L. Body size and growth patterns in wild boars of Tuscany, Central Italy. J. Mt. Ecol. 3, 66–68 (1995).

    Google Scholar 

  • 34.

    Šprem, N. et al. Morphometrical analysis of reproduction traits for the wild boar (Sus scrofa L.) in Croatia. Agric. Conspec. Sci. 76, 263–265 (2011).

    Google Scholar 

  • 35.

    Merli, E., Grignolio, S., Marcon, A. & Apollonio, M. Wild boar under fire: the effect of spatial behaviour, habitat use and social class on hunting mortality. J. Zool. 303, 155–164 (2017).

    Article  Google Scholar 

  • 36.

    Poteaux, C. et al. Socio-genetic structure and mating system of a wild boar population. J. Zool. 278, 116–125 (2009).

    Article  Google Scholar 

  • 37.

    Mauget, R. & Boissin, J. Seasonal changes in testis weight and testosterone concentration in the European wild boar (Sus scrofa L.). Anim. Reprod. Sci. 13, 67–74 (1987).

    CAS  Article  Google Scholar 

  • 38.

    Bisi, F. et al. Climate, tree masting and spatial behaviour in wild boar (Sus scrofa L.): Insight from a long-term study. Ann. For. Sci. 75, 46 (2018).

    Article  Google Scholar 

  • 39.

    Keuling, O., Stier, N. & Roth, M. How does hunting influence activity and spatial usage in wild boar Sus scrofa L.?. Eur. J. Wildl. Res. 54, 729–737 (2008).

    Article  Google Scholar 

  • 40.

    Brivio, F. et al. An analysis of intrinsic and extrinsic factors affecting the activity of a nocturnal species: the wild boar. Mamm. Biol. 84, 73–81 (2017).

    Article  Google Scholar 

  • 41.

    Singer, F. J., Otto, D. K., Tipton, A. R. & Hable, C. P. Home ranges, movements, and habitat use of European wild boar in Tennessee. J. Wildl. Manag. 45, 343–353 (1981).

    Article  Google Scholar 

  • 42.

    Dardaillon, M. Wild boar social groupings and their seasonal changes in the Camargue, southern France. Z. Für Säugetierkd. 53, 22–30 (1988).

    Google Scholar 

  • 43.

    Treyer, D. et al. Influence of sex, age and season on body weight, energy intake and endocrine parameter in wild living wild boars in southern Germany. Eur. J. Wildl. Res. 58, 373–378 (2012).

    Article  Google Scholar 

  • 44.

    Festa-Bianchet, M. The cost of trying: weak interspecific correlations among life-history components in male ungulates. Can. J. Zool. 90, 1072–1085 (2012).

    Article  Google Scholar 

  • 45.

    Knott, K. K., Barboza, P. S. & Bowyer, R. T. Growth in arctic ungulates: postnatal development and organ maturation in Rangifer tarandus and Ovibos moschatus. J. Mammal. 86, 121–130 (2005).

    Article  Google Scholar 

  • 46.

    Briedermann, L. Wild boars. Deutscher Landwirtschaftsverlag (1990).

  • 47.

    Chianucci, F. et al. Multi-temporal dataset of stand and canopy structural data in temperate and Mediterranean coppice forests. Ann. For. Sci. 76, 80 (2019).

    Article  Google Scholar 

  • 48.

    Zullinger, E. M., Ricklefs, R. E., Redford, K. H. & Mace, G. M. Fitting sigmoidal equations to mammalian growth curves. J. Mammal. 65, 607–636 (1984).

    Article  Google Scholar 

  • 49.

    Sand, H., Cederlund, G. & Danell, K. Geographical and latitudinal variation in growth patterns and adult body size of Swedish moose (Alces alces). Oecologia 102, 433–442 (1995).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2015).

    Google Scholar 

  • 51.

    Henry, V. G. Length of estrous cycle and gestation in European Wild Hogs. J. Wildl. Manag. 32, 406 (1968).

    Article  Google Scholar 

  • 52.

    Vericad Corominas, J. R. Estimación de la edad fetal y períodos de concepción y parto del jabalí (Sus scrofa L.) en los Pirineos occidentales. (1981).

  • 53.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, Berlin, 2009).

    Google Scholar 

  • 54.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH  Article  Google Scholar 

  • 55.

    Symonds, M. R. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    An aggressive market-driven model for US fusion power development

    King Climate Action Initiative announces new research to test and scale climate solutions