Bonnet, S. I., Binetruy, F., Hernández-Jarguín, A. M. & Duron, O. The tick microbiome: Why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front. Cell. Infect. Microbiol. 7, 236. https://doi.org/10.3389/fcimb.2017.00236 (2017).
Google Scholar
Burgdorfer, W., Hayes, S. & Mavros, A. Non-pathogenic rickettsiae in Dermacentor andersoni: A limiting factor for the distribution of Rickettsia rickettsii. In Rickettsia and Rickettsial Disease (eds Burgdorfer, A. A. & Anacker, R. L.) 585–594 (Academic, 1981).
Chauvin, A., Moreau, E., Bonnet, S., Plantard, O. & Malandrin, L. Babesia and its hosts: Adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet. Res. 40, 37. https://doi.org/10.1051/vetres/2009020 (2009).
Google Scholar
Ravi, A. et al. Metagenomic profiling of ticks: Identification of novel rickettsial genomes and detection of tick-borne canine parvovirus. PLoS Negl. Trop. Dis. 13(1), 1–19 (2019).
Google Scholar
Greay, T. L. et al. Recent insights into the tick microbiome gained through next-generation sequencing. Parasites Vectors 11(1), 1–14 (2018).
Google Scholar
Rar, V. et al. Detection and genetic characterization of a wide range of infectious agents in Ixodes pavlovskyi ticks in Western Siberia, Russia. Parasites Vectors 10(1), 1–24 (2017).
Google Scholar
Filippova, N. A. Ixodid Ticks of the Subfamily Ixodinae (Publishing House Nauka, 1977).
Bouquet, J. et al. Metagenomic-based surveillance of pacific coast tick dermacentor occidentalis identifies two novel bunyaviruses and an emerging human Ricksettsial pathogen. Sci. Rep. 7(1), 1–10. https://doi.org/10.1038/s41598-017-12047-6 (2017).
Google Scholar
Andreotti, R. et al. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol. 11(6), 1–11 (2011).
Nakao, R. et al. A novel approach, based on BLSOMs (batch learning self-organizing maps), to the microbiome analysis of ticks. ISME J. 7(5), 1003–1015. https://doi.org/10.1038/ismej.2012.171 (2013).
Google Scholar
Xia, H. et al. Metagenomic profile of the viral communities in Rhipicephalus spp. ticks from Yunnan, China. PLoS ONE 10(3), 1–16. https://doi.org/10.1371/journal.pone.0121609 (2015).
Google Scholar
Barros-Battesti, D., Arzua, M. & Bechara, H. Carrapato de Importância Medico-Veterinaria da Região Neotropical: Um Guia Ilustrado para Identificação de Espécies (Ticks of Medical-Veterinary Importance in the Neotropical Region: An Illustrated Guide for Species Identification). 10ma edição 223 (Butantan Publicação, 2006).
QIAGEN. Gentra, Puregene (QIAGEN GROUP), 2007–2010 (accessed 9 June 2017); https://www.qiagen.com/us/shop/sample-technologies/dna/genomic-dna/gentra-puregene-tissue-kit/#orderinginformation.
Sperling, J. L. et al. Comparison of bacterial 16S rRNA variable regions for microbiome surveys of ticks. Ticks Tick Borne Dis. 8, 453–461 (2017).
Google Scholar
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108(Supplement 1), 4516–4522 (2011).
Google Scholar
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2200 (2011).
Google Scholar
Glassing, A. et al. Changes in 16S RNA gene microbial community profiling by concentration of prokaryotic DNA. J. Microbiol. Methods 119, 239242 (2015).
Google Scholar
Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10(1), 57–59 (2013).
Google Scholar
Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: An R package to analyse and visualise 16S rRNA amplicon data. BioRxiv. https://doi.org/10.1101/299537 (2018).
Google Scholar
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), 1–11 (2013).
Google Scholar
DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72(7), 5069–5072 (2006).
Google Scholar
Obregón, D., Bard, E., Abrial, D., Estrada-Peña, A. & Cabezas-Cruz, A. Sex-specific linkages between taxonomic and functional profiles of tick gut microbiomes. Front. Cell. Infect. Microbiol. 9, 298. https://doi.org/10.3389/fcimb.2019.00298 (2019).
Google Scholar
Qiu, Y., Nakao, R., Ohnuma, A., Kawamori, F. & Sugimoto, C. Microbial population analysis of the salivary glands of ticks; a possible strategy for the surveillance of bacterial pathogens. PLoS ONE 9(8), e103961 (2014).
Google Scholar
Van Treuren, W. et al. Variation in the microbiota of Ixodes ticks with regard to geography, species, and sex. Appl. Environ. Microbiol. 81, 6200–6209 (2015).
Google Scholar
Carpi, G. et al. Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS ONE 6(10), e25604 (2011).
Google Scholar
Zhang, X.-C., Yang, Z.-N., Lu, B., Ma, X.-F. & Zhang, C.-X. The composition and transmission of microbiome in hard tick, Ixodes persulcatus, during blood meal. Ticks Tick Borne Dis. 5, 864–870 (2014).
Google Scholar
Menchaca, A. C. et al. Preliminary assessment of microbiome changes following blood-feeding and survivorship in the Amblyomma americanum nymph-to-adult transition using semiconductor sequencing. PLoS ONE 8, 1–10 (2013).
Google Scholar
Clayton, K. A., Gall, C. A., Mason, K. L., Scoles, G. A. & Brayton, K. A. The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wood tick, Dermacentor andersoni. Parasites Vectors 8, 1–5 (2018).
Google Scholar
Crump, J. A., Sjölund-Karlsson, M., Gordon, M. A. & Parry, C. M. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin. Microbiol. Rev. 1, 901–937. https://doi.org/10.1128/CMR.00002-15 (2015).
Google Scholar
Jesser, K. J. & Noble, R. T. Vibrio ecology in the Neuse River Estuary, North Carolina, characterized by next-generation amplicon sequencing of the gene encoding heat shock protein 60 (hsp60). Appl. Environ. Microbiol. 84, 1–21. https://doi.org/10.1128/AEM.00333-18 (2018).
Google Scholar
Payne, S. M., Mey, A. R. & Wyckoff, E. E. Vibrio iron transport: Evolutionary adaptation to life in multiple environments. Microbiol. Mol. Biol. Rev. 80, 69–90. https://doi.org/10.1128/MMBR.00046-15 (2016).
Google Scholar
Boyd, E. F. et al. Post genomic analysis of the evolutionary history and innovations of the family Vibrionaceae. Microbiol. Spectr. 3(5), 1–43. https://doi.org/10.1128/microbiolspec.VE-0009-2014 (2015).
Google Scholar
Maj, A. et al. Plasmids of carotenoid-producing Paracoccus spp. (Alphaproteobacteria)—Structure, diversity and evolution. PLoS ONE 8(11), 1–27. https://doi.org/10.1371/journal.pone.0080258 (2013).
Google Scholar
Patro, L. P. P. & Rathinavelan, T. Targeting the sugary armor of Klebsiella species. Front. Cell. Infect. Microbiol. 9, 1–23. https://doi.org/10.3389/fcimb.2019.00367 (2019).
Google Scholar
Folkesson, A. et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: An evolutionary perspective. Nat. Rev. Microbiol. 10, 841–851. https://doi.org/10.1038/nrmicro2907 (2019).
Google Scholar
Wong, J. S. J. et al. Corynebacterium accolens-associated pelvic osteomyelitis. J. Clin. Microbiol. 48(2), 654–655 (2010).
Google Scholar
Gay, N. R., Fleming, E. & Oh, J. Draft genome sequence of Cloacibacterium normanense NRS-1 isolated from municipal wastewater. Genome Announc. 4(6), 1–2. https://doi.org/10.1128/genomeA.01397-16 (2016).
Google Scholar
Kurilshikov, A. et al. Comparative metagenomic profiling of symbiotic bacterial communities associated with ixodes persulcatus, ixodes pavlovskyi and dermacentor reticulatus ticks. PLoS ONE 10(7), 1–13 (2015).
Google Scholar
Martínez, M. A. Retrato microbiológico. J. Microbiol. Immunol. Infect. 44(1), 289–295 (2011).
Moreno-Forero, S. K. & Van-Der-Meer, J. R. Genome-wide analysis of Sphingomonas wittichii RW1 behaviour during inoculation and growth in contaminated sand. ISME J. 9(1), 150–165 (2015).
Google Scholar
Giron, S. Diversidad bacteriana de la garrapata Rhipicephalus (Boophilus) microplus en el ganado bovino del estado de Tamaulipas (Bacterial diversity of Rhipicephalus (Boophilus) microplus tick in cattle of the state of Tamaulipas). (2015). [Thesis]. Thesis to obtain the title of Master of Science in Genomic Biotechnology viable (accessed 14 October 2019); https://tesis.ipn.mx/handle/123456789/24552.
Jimemez, M., Gasper, M., Carmona, M. & Terio, K. Suidae and Tayassuidae. Pathol. Wildl. Zoo Anim. 1, 207–228 (2018).
Sutherland-Smith, M. Suidae and Tayassuidae (Wild Pigs, Peccaries). Fowler’s Zoo Wild Anim. Med. 1(8), 568–584 (2015).
Google Scholar
Bermúdez, S., Meyer, N., Moreno, R. & Artavia, A. NOTAS SOBRE Pecari tajacu (L., Y Tayassu peccari (LINK, 1795) (ARTIODACTYLA: TAYASSUIDAE) COMO HOSPEDEROS DE GARRAPATAS DURAS (ACARI: IXODIDAE) EN PANAMÁ. Tecnociencia 20(1), 61–70 (2008).
Rodríguez-Vivas, R. I., Quiñones, A. F. & Fragoso, S. H. Epidemiología y control de la garrapata Boophilus en México (Epidemiology and control of Boophilus tick in Mexico). In Enfermedades de Importancia Económica en Producción Animal (Diseases of Economic Importance in Animal Production) (ed. Rodríguez-Vivas, R. I.) 571–592 (McGraw-Hill-UADY, 2005).
Duron, O. et al. Evolutionary changes in symbiont community structure in ticks. Mol. Ecol. 26, 2905–2921. https://doi.org/10.1111/mec.14094 (2017).
Google Scholar
Zhong, J., Jasinskas, A. & Barbour, A. G. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS ONE 2, 1–7. https://doi.org/10.1371/journal.pone.0000405 (2017).
Google Scholar
Gottlieb, Y., Lalzar, I. & Klasson, L. Distinctive genome reduction rates revealed by genomic analyses of two Coxiella-like endosymbionts in ticks. Genome Biol. Evol. 7, 1779–1796. https://doi.org/10.1093/gbe/evv108 (2015).
Google Scholar
Gerhart, J. G., Moses, A. S. & Raghavan, R. A. Francisella-like endosymbiont in the Gulf Coast tick evolved from a mammalian pathogen. Sci. Rep. 6, 1–6. https://doi.org/10.1038/srep33670 (2016).
Google Scholar
Sjodin, A. et al. Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish. BMC Genomics 13, 1–13. https://doi.org/10.1186/1471-2164-13-268 (2012).
Google Scholar
Machado-Ferreira, E. et al. Coxiella symbionts are widespread into hard ticks. Parasitol. Res. 115(12), 4691–4699. https://doi.org/10.1007/s00436-016-5230-z (2016).
Google Scholar
Duron, O. The IS1111 insertion sequence used for detection of Coxiella burnetii is widespread in Coxiella-like endosymbionts of ticks. FEMS Microbiol. Lett. 362(17), 1–8. https://doi.org/10.1093/femsle/fnv132 (2015).
Google Scholar
Source: Ecology - nature.com