in

Characterization of the bacterial microbiome of Rhipicephalus (Boophilus) microplus collected from Pecari tajacu “Sajino” Madre de Dios, Peru

  • 1.

    Bonnet, S. I., Binetruy, F., Hernández-Jarguín, A. M. & Duron, O. The tick microbiome: Why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front. Cell. Infect. Microbiol. 7, 236. https://doi.org/10.3389/fcimb.2017.00236 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Burgdorfer, W., Hayes, S. & Mavros, A. Non-pathogenic rickettsiae in Dermacentor andersoni: A limiting factor for the distribution of Rickettsia rickettsii. In Rickettsia and Rickettsial Disease (eds Burgdorfer, A. A. & Anacker, R. L.) 585–594 (Academic, 1981).

    Google Scholar 

  • 3.

    Chauvin, A., Moreau, E., Bonnet, S., Plantard, O. & Malandrin, L. Babesia and its hosts: Adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet. Res. 40, 37. https://doi.org/10.1051/vetres/2009020 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Ravi, A. et al. Metagenomic profiling of ticks: Identification of novel rickettsial genomes and detection of tick-borne canine parvovirus. PLoS Negl. Trop. Dis. 13(1), 1–19 (2019).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Greay, T. L. et al. Recent insights into the tick microbiome gained through next-generation sequencing. Parasites Vectors 11(1), 1–14 (2018).

    Article 

    Google Scholar 

  • 6.

    Rar, V. et al. Detection and genetic characterization of a wide range of infectious agents in Ixodes pavlovskyi ticks in Western Siberia, Russia. Parasites Vectors 10(1), 1–24 (2017).

    Article 

    Google Scholar 

  • 7.

    Filippova, N. A. Ixodid Ticks of the Subfamily Ixodinae (Publishing House Nauka, 1977).

    Google Scholar 

  • 8.

    Bouquet, J. et al. Metagenomic-based surveillance of pacific coast tick dermacentor occidentalis identifies two novel bunyaviruses and an emerging human Ricksettsial pathogen. Sci. Rep. 7(1), 1–10. https://doi.org/10.1038/s41598-017-12047-6 (2017).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Andreotti, R. et al. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol. 11(6), 1–11 (2011).

    Google Scholar 

  • 10.

    Nakao, R. et al. A novel approach, based on BLSOMs (batch learning self-organizing maps), to the microbiome analysis of ticks. ISME J. 7(5), 1003–1015. https://doi.org/10.1038/ismej.2012.171 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Xia, H. et al. Metagenomic profile of the viral communities in Rhipicephalus spp. ticks from Yunnan, China. PLoS ONE 10(3), 1–16. https://doi.org/10.1371/journal.pone.0121609 (2015).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Barros-Battesti, D., Arzua, M. & Bechara, H. Carrapato de Importância Medico-Veterinaria da Região Neotropical: Um Guia Ilustrado para Identificação de Espécies (Ticks of Medical-Veterinary Importance in the Neotropical Region: An Illustrated Guide for Species Identification). 10ma edição 223 (Butantan Publicação, 2006).

    Google Scholar 

  • 13.

    QIAGEN. Gentra, Puregene (QIAGEN GROUP), 2007–2010 (accessed 9 June 2017); https://www.qiagen.com/us/shop/sample-technologies/dna/genomic-dna/gentra-puregene-tissue-kit/#orderinginformation.

  • 14.

    Sperling, J. L. et al. Comparison of bacterial 16S rRNA variable regions for microbiome surveys of ticks. Ticks Tick Borne Dis. 8, 453–461 (2017).

    Article 

    Google Scholar 

  • 15.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108(Supplement 1), 4516–4522 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2200 (2011).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Glassing, A. et al. Changes in 16S RNA gene microbial community profiling by concentration of prokaryotic DNA. J. Microbiol. Methods 119, 239242 (2015).

    Article 

    Google Scholar 

  • 18.

    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10(1), 57–59 (2013).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: An R package to analyse and visualise 16S rRNA amplicon data. BioRxiv. https://doi.org/10.1101/299537 (2018).

    Article 

    Google Scholar 

  • 20.

    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), 1–11 (2013).

    Article 

    Google Scholar 

  • 21.

    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72(7), 5069–5072 (2006).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Obregón, D., Bard, E., Abrial, D., Estrada-Peña, A. & Cabezas-Cruz, A. Sex-specific linkages between taxonomic and functional profiles of tick gut microbiomes. Front. Cell. Infect. Microbiol. 9, 298. https://doi.org/10.3389/fcimb.2019.00298 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Qiu, Y., Nakao, R., Ohnuma, A., Kawamori, F. & Sugimoto, C. Microbial population analysis of the salivary glands of ticks; a possible strategy for the surveillance of bacterial pathogens. PLoS ONE 9(8), e103961 (2014).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Van Treuren, W. et al. Variation in the microbiota of Ixodes ticks with regard to geography, species, and sex. Appl. Environ. Microbiol. 81, 6200–6209 (2015).

    Article 

    Google Scholar 

  • 25.

    Carpi, G. et al. Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS ONE 6(10), e25604 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 26.

    Zhang, X.-C., Yang, Z.-N., Lu, B., Ma, X.-F. & Zhang, C.-X. The composition and transmission of microbiome in hard tick, Ixodes persulcatus, during blood meal. Ticks Tick Borne Dis. 5, 864–870 (2014).

    Article 

    Google Scholar 

  • 27.

    Menchaca, A. C. et al. Preliminary assessment of microbiome changes following blood-feeding and survivorship in the Amblyomma americanum nymph-to-adult transition using semiconductor sequencing. PLoS ONE 8, 1–10 (2013).

    Article 

    Google Scholar 

  • 28.

    Clayton, K. A., Gall, C. A., Mason, K. L., Scoles, G. A. & Brayton, K. A. The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wood tick, Dermacentor andersoni. Parasites Vectors 8, 1–5 (2018).

    CAS 

    Google Scholar 

  • 29.

    Crump, J. A., Sjölund-Karlsson, M., Gordon, M. A. & Parry, C. M. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin. Microbiol. Rev. 1, 901–937. https://doi.org/10.1128/CMR.00002-15 (2015).

    Article 

    Google Scholar 

  • 30.

    Jesser, K. J. & Noble, R. T. Vibrio ecology in the Neuse River Estuary, North Carolina, characterized by next-generation amplicon sequencing of the gene encoding heat shock protein 60 (hsp60). Appl. Environ. Microbiol. 84, 1–21. https://doi.org/10.1128/AEM.00333-18 (2018).

    Article 

    Google Scholar 

  • 31.

    Payne, S. M., Mey, A. R. & Wyckoff, E. E. Vibrio iron transport: Evolutionary adaptation to life in multiple environments. Microbiol. Mol. Biol. Rev. 80, 69–90. https://doi.org/10.1128/MMBR.00046-15 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 32.

    Boyd, E. F. et al. Post genomic analysis of the evolutionary history and innovations of the family Vibrionaceae. Microbiol. Spectr. 3(5), 1–43. https://doi.org/10.1128/microbiolspec.VE-0009-2014 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Maj, A. et al. Plasmids of carotenoid-producing Paracoccus spp. (Alphaproteobacteria)—Structure, diversity and evolution. PLoS ONE 8(11), 1–27. https://doi.org/10.1371/journal.pone.0080258 (2013).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Patro, L. P. P. & Rathinavelan, T. Targeting the sugary armor of Klebsiella species. Front. Cell. Infect. Microbiol. 9, 1–23. https://doi.org/10.3389/fcimb.2019.00367 (2019).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Folkesson, A. et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: An evolutionary perspective. Nat. Rev. Microbiol. 10, 841–851. https://doi.org/10.1038/nrmicro2907 (2019).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Wong, J. S. J. et al. Corynebacterium accolens-associated pelvic osteomyelitis. J. Clin. Microbiol. 48(2), 654–655 (2010).

    Article 

    Google Scholar 

  • 37.

    Gay, N. R., Fleming, E. & Oh, J. Draft genome sequence of Cloacibacterium normanense NRS-1 isolated from municipal wastewater. Genome Announc. 4(6), 1–2. https://doi.org/10.1128/genomeA.01397-16 (2016).

    Article 

    Google Scholar 

  • 38.

    Kurilshikov, A. et al. Comparative metagenomic profiling of symbiotic bacterial communities associated with ixodes persulcatus, ixodes pavlovskyi and dermacentor reticulatus ticks. PLoS ONE 10(7), 1–13 (2015).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Martínez, M. A. Retrato microbiológico. J. Microbiol. Immunol. Infect. 44(1), 289–295 (2011).

    Google Scholar 

  • 40.

    Moreno-Forero, S. K. & Van-Der-Meer, J. R. Genome-wide analysis of Sphingomonas wittichii RW1 behaviour during inoculation and growth in contaminated sand. ISME J. 9(1), 150–165 (2015).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Giron, S. Diversidad bacteriana de la garrapata Rhipicephalus (Boophilus) microplus en el ganado bovino del estado de Tamaulipas (Bacterial diversity of Rhipicephalus (Boophilus) microplus tick in cattle of the state of Tamaulipas). (2015). [Thesis]. Thesis to obtain the title of Master of Science in Genomic Biotechnology viable (accessed 14 October 2019); https://tesis.ipn.mx/handle/123456789/24552.

  • 42.

    Jimemez, M., Gasper, M., Carmona, M. & Terio, K. Suidae and Tayassuidae. Pathol. Wildl. Zoo Anim. 1, 207–228 (2018).

    Google Scholar 

  • 43.

    Sutherland-Smith, M. Suidae and Tayassuidae (Wild Pigs, Peccaries). Fowler’s Zoo Wild Anim. Med. 1(8), 568–584 (2015).

    Article 

    Google Scholar 

  • 44.

    Bermúdez, S., Meyer, N., Moreno, R. & Artavia, A. NOTAS SOBRE Pecari tajacu (L., Y Tayassu peccari (LINK, 1795) (ARTIODACTYLA: TAYASSUIDAE) COMO HOSPEDEROS DE GARRAPATAS DURAS (ACARI: IXODIDAE) EN PANAMÁ. Tecnociencia 20(1), 61–70 (2008).

    Google Scholar 

  • 45.

    Rodríguez-Vivas, R. I., Quiñones, A. F. & Fragoso, S. H. Epidemiología y control de la garrapata Boophilus en México (Epidemiology and control of Boophilus tick in Mexico). In Enfermedades de Importancia Económica en Producción Animal (Diseases of Economic Importance in Animal Production) (ed. Rodríguez-Vivas, R. I.) 571–592 (McGraw-Hill-UADY, 2005).

    Google Scholar 

  • 46.

    Duron, O. et al. Evolutionary changes in symbiont community structure in ticks. Mol. Ecol. 26, 2905–2921. https://doi.org/10.1111/mec.14094 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 47.

    Zhong, J., Jasinskas, A. & Barbour, A. G. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS ONE 2, 1–7. https://doi.org/10.1371/journal.pone.0000405 (2017).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Gottlieb, Y., Lalzar, I. & Klasson, L. Distinctive genome reduction rates revealed by genomic analyses of two Coxiella-like endosymbionts in ticks. Genome Biol. Evol. 7, 1779–1796. https://doi.org/10.1093/gbe/evv108 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Gerhart, J. G., Moses, A. S. & Raghavan, R. A. Francisella-like endosymbiont in the Gulf Coast tick evolved from a mammalian pathogen. Sci. Rep. 6, 1–6. https://doi.org/10.1038/srep33670 (2016).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Sjodin, A. et al. Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish. BMC Genomics 13, 1–13. https://doi.org/10.1186/1471-2164-13-268 (2012).

    Article 

    Google Scholar 

  • 51.

    Machado-Ferreira, E. et al. Coxiella symbionts are widespread into hard ticks. Parasitol. Res. 115(12), 4691–4699. https://doi.org/10.1007/s00436-016-5230-z (2016).

    Article 
    PubMed 

    Google Scholar 

  • 52.

    Duron, O. The IS1111 insertion sequence used for detection of Coxiella burnetii is widespread in Coxiella-like endosymbionts of ticks. FEMS Microbiol. Lett. 362(17), 1–8. https://doi.org/10.1093/femsle/fnv132 (2015).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations

    Study reveals plunge in lithium-ion battery costs