in

Climate-driven flyway changes and memory-based long-distance migration

  • 1.

    McRae, L. et al. Arctic Species Trend Index 2010. Tracking Trends in Arctic Wildlife (CAFF International Secretariat, 2010).

  • 2.

    Lameris, T. K. et al. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification. Glob. Change Biol. 23, 4058–4067 (2017).

    Article  Google Scholar 

  • 3.

    Trautmann, S. in Bird Species (ed. Tietze, D. T.) 217–234 (Springer, 2018).

  • 4.

    Zurell, D., Graham, C. H., Gallien, L., Thuiller, W. & Zimmermann, N. E. Long-distance migratory birds threatened by multiple independent risks from global change. Nat. Clim. Change 8, 992–996 (2018).

    ADS  Article  Google Scholar 

  • 5.

    Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018).

    ADS  CAS  Article  Google Scholar 

  • 6.

    White, C. M., Cade, T. J. & Enderson, J. H. Peregrine Falcons of the World (Lynx, 2013).

  • 7.

    Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751–1753 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Brambilla, M., Rubolini, D. & Guidali, F. Factors affecting breeding habitat selection in a cliff-nesting peregrine Falco peregrinus population. J. Ornithol. 147, 428–435 (2006).

    Article  Google Scholar 

  • 10.

    Hausdorff, F. Bemerkung über den Inhalt von Punktmengen. Math. Ann. 75, 428–433 (1914).

    MathSciNet  MATH  Article  Google Scholar 

  • 11.

    Pulido, F. The genetics and evolution of avian migration. Bioscience 57, 165–174 (2007).

    Article  Google Scholar 

  • 12.

    Perdeck, A. C. An experiment on the ending of autumn migration in starlings. Ardea 52, 133–139 (1964).

    Google Scholar 

  • 13.

    Delmore, K. E., Toews, D. P., Germain, R. R., Owens, G. L. & Irwin, D. E. The genetics of seasonal migration and plumage color. Curr. Biol. 26, 2167–2173 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Impey, S. et al. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat. Neurosci. 1, 595–601 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599–609 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Iguchi-Ariga, S. M. & Schaffner, W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 3, 612–619 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Bartsch, D. et al. Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell 83, 979–992 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Wieczorek, L. et al. Absence of Ca2+-stimulated adenylyl cyclases leads to reduced synaptic plasticity and impaired experience-dependent fear memory. Transl. Psychiatry 2, e126 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Rosenegger, D., Wright, C. & Lukowiak, K. A quantitative proteomic analysis of long-term memory. Mol. Brain 3, 9 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 22.

    Ferguson, G. D. & Storm, D. R. Why calcium-stimulated adenylyl cyclases? Physiology (Bethesda) 19, 271–276 (2004).

    CAS  Google Scholar 

  • 23.

    Zhang, M. et al. Ca-stimulated type 8 adenylyl cyclase is required for rapid acquisition of novel spatial information and for working/episodic-like memory. J. Neurosci. 28, 4736–4744 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Yin, J. C. & Tully, T. CREB and the formation of long-term memory. Curr. Opin. Neurobiol. 6, 264–268 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Wauchope, H. S. et al. Rapid climate-driven loss of breeding habitat for Arctic migratory birds. Glob. Change Biol. 23, 1085–1094 (2017).

    ADS  Article  Google Scholar 

  • 26.

    Lok, T., Overdijk, O. & Piersma, T. The cost of migration: spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol. Lett. 11, 20140944 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Brown, J. W. et al. Appraisal of the consequences of the DDT-induced bottleneck on the level and geographic distribution of neutral genetic variation in Canadian peregrine falcons, Falco peregrinus. Mol. Ecol. 16, 327–343 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing. PLoS Biol. 6, e188 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 29.

    Mueller, J. C., Pulido, F. & Kempenaers, B. Identification of a gene associated with avian migratory behaviour. Proc. R. Soc. Lond. B 278, 2848–2856 (2011).

    CAS  Google Scholar 

  • 30.

    Peterson, M. P. et al. Variation in candidate genes CLOCK and ADCYAP1 does not consistently predict differences in migratory behavior in the songbird genus Junco. F1000Res. 2, 115 (2013).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Douglas, D. C. et al. Moderating Argos location errors in animal tracking data. Methods Ecol. Evol. 3, 999–1007 (2012).

    Article  Google Scholar 

  • 32.

    Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Trierweiler, C. et al. Migratory connectivity and population-specific migration routes in a long-distance migratory bird. Proc. R. Soc. Lond. B 281, 20132897 (2014).

    Google Scholar 

  • 34.

    Ambrosini, R., Møller, A. P. & Saino, N. A quantitative measure of migratory connectivity. J. Theor. Biol. 257, 203–211 (2009).

    MathSciNet  PubMed  Article  Google Scholar 

  • 35.

    Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall/CRC, 2015).

  • 36.

    López-López, D. P., García-Ripollés, C. & Urios, V. Individual repeatability in timing and spatial flexibility of migration routes of trans-Saharan migratory raptors. Curr. Zool. 60, 642–652 (2014).

    Article  Google Scholar 

  • 37.

    Benhamou, S. How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? J. Theor. Biol. 229, 209–220 (2004).

    MathSciNet  PubMed  MATH  Article  Google Scholar 

  • 38.

    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed‐effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).

    Article  Google Scholar 

  • 39.

    Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Routledge Academic, 1988).

  • 40.

    Ganusevich, S. A. et al. Autumn migration and wintering areas of peregrine falcons Falco peregrinus nesting on the Kola Peninsula, northern Russia. Ibis 146, 291–297 (2004).

    Article  Google Scholar 

  • 41.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Zhao, S. et al. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat. Genet. 45, 67–71 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Damas, J. et al. Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set. Genome Res. 27, 875–884 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Zhan, X. et al. Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle. Nat. Genet. 45, 563–566 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Rodríguez-Ramilo, S. T. & Wang, J. The effect of close relatives on unsupervised Bayesian clustering algorithms in population genetic structure analysis. Mol. Ecol. Resour. 12, 873–884 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Tang, H. et al. Genetic structure, self-identified race/ethnicity, and confounding in case–control association studies. Am. J. Hum. Genet. 76, 268–275 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Terhorst, J., Kamm, J. A. & Song, Y. S. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Staab, P. R., Zhu, S., Metzler, D. & Lunter, G. scrm: efficiently simulating long sequences using the approximated coalescent with recombination. Bioinformatics 31, 1680–1682 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Pudlo, P. et al. Reliable ABC model choice via random forests. Bioinformatics 32, 859–866 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Csilléry, K., François, O. & Blum, M. G. abc: an R package for approximate Bayesian computation (ABC). Methods Ecol. Evol. 3, 475–479 (2012).

    Article  Google Scholar 

  • 55.

    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: species distribution modeling. R package version 1.3-3 https://cran.r-project.org/package=dismo (2020).

  • 56.

    Calenge, C. adhabitatHR: home range estimation. R package version 0.4.19 https://cran.r-project.org/package=adehabitatHR (2021).

  • 57.

    Fick, S. E. & Hijmans, R. J. WorldClim2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  • 58.

    Beyer, R. M., Krapp, M. & Manica, A. High-resolution terrestrial climate, bioclimate and vegetation for the last 120,000 years. Sci. Data 7, 236 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Cao, X., Tian, F., Dallmeyer, A. & Herzschuh, U. Northern Hemisphere biome changes (> 30° N) since 40 cal ka bp and their driving factors inferred from model-data comparisons. Quat. Sci. Rev. 220, 291–309 (2019).

  • 60.

    Borchers, H. W. pracma: practical numerical math functions. R package version 2.3.3 https://cran.r-project.org/package=pracma (2021).

  • 61.

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Beissinger, T. M., Rosa, G. J., Kaeppler, S. M., Gianola, D. & de Leon, N. Defining window-boundaries for genomic analyses using smoothing spline techniques. Genet. Sel. Evol. 47, 30 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 65.

    Szpiech, Z. A. & Hernandez, R. D. selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Mol. Biol. Evol. 31, 2824–2827 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Zheng, G. X. et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 34, 303–311 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    François, O., Martins, H., Caye, K. & Schoville, S. D. Controlling false discoveries in genome scans for selection. Mol. Ecol. 25, 454–469 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 69.

    Fariello, M. I., Boitard, S., Naya, H., SanCristobal, M. & Servin, B. Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics 193, 929–941 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Bonhomme, M. et al. Detecting selection in population trees: the Lewontin and Krakauer test extended. Genetics 186, 241–262 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Frichot, E. & François, O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).

    Article  Google Scholar 

  • 72.

    Pan, S. et al. Population transcriptomes reveal synergistic responses of DNA polymorphism and RNA expression to extreme environments on the Qinghai–Tibetan Plateau in a predatory bird. Mol. Ecol. 26, 2993–3010 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 73.

    Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 74.

    Yang, L. et al. TFBSshape: a motif database for DNA shape features of transcription factor binding sites. Nucleic Acids Res. 42, D148–D155 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 75.

    Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21–29 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Barbato, M., Orozco-terWengel, P., Tapio, M. & Bruford, M. W. SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Front. Genet. 6, 109 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 78.

    Pitt, D. et al. Demography and rapid local adaptation shape Creole cattle genome diversity in the tropics. Evol. Appl. 12, 105–122 (2019).

    PubMed  Article  Google Scholar 

  • 79.

    Carlzon, L., Karlsson, A., Falk, K., Liess, A. & Møller, S. Extreme weather affects peregrine falcon (Falco peregrinus tundrius) breeding success in South Greenland. Ornis Hungarica 26, 38–50 (2018).

    Article  Google Scholar 

  • 80.

    Franke, A. et al. Status and trends of circumpolar peregrine falcon and gyrfalcon populations. Ambio 49, 762–783 (2020).

    PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    MIT Solve announces 2021 global challenges

    MIT and Danish university students unite to envision a more sustainable future