in

Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents

  • 1.

    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Chang Biol. 20, 2221–2229 (2014).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Boggs, C. L. & Inouye, D. W. A single climate driver has direct and indirect effects on insect population dynamics. Ecol. Lett. 15, 502–508 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Burkett, V. R. et al. Nonlinear dynamics in ecosystem response to climatic change: case studies and policy implications. Ecol. Complex. 2, 357–394 (2005).

    Article  Google Scholar 

  • 4.

    Molnár, P. K., Sckrabulis, J. P., Altman, K. A. & Raffel, T. R. Thermal performance curves and the metabolic theory of ecology—a practical guide to models and experiments for parasitologists. J. Parasitol. 103, 423–439 (2017).

  • 5.

    Hortion, J. et al. Acute flavivirus and alphavirus infections among children in two different areas of Kenya, 2015. Am. J. Trop. Med. Hyg. 100, 170–173 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Stewart-Ibarra, A. M. & Lowe, R. Climate and non-climate drivers of dengue epidemics in Southern Coastal Ecuador. Am. J. Trop. Med. Hyg. 88, 971–981 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Jury, M. R. Climate influence on dengue epidemics in Puerto Rico. Int. J. Environ. Health Res. 18, 323–334 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Campbell, K. M. et al. Weather regulates location, timing, and intensity of dengue virus transmission between humans and mosquitoes. PLoS Negl. Trop. Dis. 9, e0003957 (2015).

  • 9.

    Adde, A. et al. Predicting dengue fever outbreaks in French Guiana using climate indicators. PLoS Negl. Trop. Dis. 10, e0004681 (2016).

  • 10.

    Dhimal, M. et al. Risk factors for the presence of chikungunya and dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in Central Nepal. PLoS Negl. Trop. Dis. 9, e0003545 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 11.

    Descloux, E. et al. Climate-based models for understanding and forecasting dengue epidemics. PLoS Negl. Trop. Dis. 6, e1470 (2012).

  • 12.

    Aswi, A., Cramb, S. M., Moraga, P. & Mengersen, K. Epidemiology and infection Bayesian spatial and spatio-temporal approaches to modelling dengue fever: a systematic review. Epidemiol. Infect. 147, https://doi.org/10.1017/S0950268818002807 (2018).

  • 13.

    Johansson, M. A. et al. An open challenge to advance probabilistic forecasting for dengue epidemics. Proc. Natl Acad. Sci. USA 116, 24268–24274 (2019).

  • 14.

    Michael, E. et al. Continental-scale, data-driven predictive assessment of eliminating the vector-borne disease, lymphatic filariasis, in sub-Saharan Africa by 2020. BMC Med. 15, 176 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Smith, T. et al. Towards a comprehensive simulation model of malaria epidemiology and control. Parasitology 135, 1507–1516 (2008).

  • 16.

    Ryan, S. J., Carlson, C. J., Mordecai, E. A. & Johnson, L. R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 13, e0007213 (2019).

  • 17.

    Kraemer, M. U. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4, e08347 (2015).

  • 18.

    Powell, J. R., Tabachnick, W. J., Powell, J. R. & Tabachnick, W. J. History of domestication and spread of Aedes aegypti—a review. Mem. Inst. Oswaldo Cruz. 108, 11–17 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017).

  • 20.

    Shocket, M. S., Ryan, S. J. & Mordecai, E. A. Temperature explains broad patterns of Ross River virus transmission. eLife 7, e37762 (2018).

  • 21.

    Paull, S. H. et al. Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proc. R. Soc. B Biol. Sci. 284, 20162078 (2017).

    Article  Google Scholar 

  • 22.

    Costa EAP de, A., Santos EM de, M., Correia, J. C. & Albuquerque de, C. M. R. Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Rev. Bras. Entomol. 54, 488–493 (2010).

    Article  Google Scholar 

  • 23.

    Gaaboub, I. A., El-Sawaf, S. K. & El-Latif, M. A. Effect of different relative humidities and temperatures on egg-production and longevity of adults of Anopheles (Myzomyia) pharoensis Theob.1. Z. f.ür. Angew. Entomol. 67, 88–94 (2009).

    Article  Google Scholar 

  • 24.

    Koenraadt, C. J. M. & Harrington, L. C. Flushing effect of rain on container-inhabiting mosquitoes Aedes aegypti and Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 45, 28–35 (2009).

    Google Scholar 

  • 25.

    Paaijmans, K. P., Wandago, M. O., Githeko, A. K., Takken, W. & Vulule, J. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS ONE 2, e1146 (2007).

  • 26.

    Benedum, C. M., Seidahmed, O. M. E., Eltahir, E. A. B. & Markuzon, N. Statistical modeling of the effect of rainfall flushing on dengue transmission in Singapore. PLoS Negl. Trop. Dis. 12, e0006935 (2018).

  • 27.

    Stewart Ibarra, A. M. et al. Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador: implications for targeted control. PLoS ONE 8, e78263 (2013).

  • 28.

    Pontes, R. J., Spielman, A., Oliveira-Lima, J. W., Hodgson, J. C. & Freeman, J. Vector densities that potentiate dengue outbreaks in a Brazilian city. Am. J. Trop. Med Hyg. 62, 378–383 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Anyamba, A. et al. Climate teleconnections and recent patterns of human and animal disease outbreaks. PLoS Negl. Trop. Dis. 6, e1465 (2012).

  • 30.

    Huber, J. H., Childs, M. L., Caldwell, J. M. & Mordecai, E. A. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission. PLoS Negl. Trop. Dis. 12, e0006451 (2018).

  • 31.

    Stewart-Ibarra, A. M. et al. Spatiotemporal clustering, climate periodicity, and social-ecological risk factors for dengue during an outbreak in Machala, Ecuador, in 2010. BMC Infect. Dis. 14, 610 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Agha, S. B., Tchouassi, D. P., Turell, M. J., Bastos, A. D. S. & Sang, R. Entomological assessment of dengue virus transmission risk in three urban areas of Kenya. PLoS Negl. Trop. Dis. 13, e0007686 (2019).

  • 33.

    Agha, S. B., Tchouassi, D. P., Bastos, A. D. S. & Sang, R. Dengue and yellow fever virus vectors: seasonal abundance, diversity and resting preferences in three Kenyan cities. Parasit. Vectors 10, 628 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Chretien, J.-P. et al. Drought-associated chikungunya emergence along coastal East Africa. Am. J. Trop. Med. Hyg. 76, 405–407 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Vu, D. M. et al. Unrecognized dengue virus infections in children, Western Kenya, 2014–2015. Emerg. Infect. Dis. 23, 1915–1917 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Gubler, D. J., Nalim, S., Saroso, J. S., Saipan, H. & Tan, R. Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes Aegypti *. Am. J. Trop. Med. Hyg. 28, 1045–1052 (1979).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Xavier-Carvalho, C., Chester Cardoso, C., de Souza Kehdya, F., Guilherme Pacheco, A. & Ozório Moraesa, M. Host genetics and dengue fever. Infect. Genet. Evol. 56, 99–110 (2017).

    PubMed  Article  Google Scholar 

  • 38.

    Lourenço, J. & Recker, M. The 2012 Madeira Dengue Outbreak: epidemiological determinants and future epidemic potential. PLoS Negl. Trop. Dis. 8, e3083 (2014).

  • 39.

    Li, R. et al. Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue. Proc. Natl Acad. Sci. USA 119, 3624–3629 (2019).

    Article  CAS  Google Scholar 

  • 40.

    Wang, X., Tang, S. & Cheke, R. A. A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations. J. Theor. Biol. 411, 27–36 (2016).

    PubMed  MATH  Article  PubMed Central  Google Scholar 

  • 41.

    Siraj, A. S. et al. Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals. PLoS Negl. Trop. Dis. 11, e0005797 (2017).

  • 42.

    Oidtman, R. J. et al. Inter-annual variation in seasonal dengue epidemics driven by multiple interacting factors in Guangzhou, China. Nat. Commun. 10, 1–12 (2019).

  • 43.

    Pyper, B. J. & Peterman, R. M. Comparison of methods to account for autocorrelation in correlation analyses of fish data. Can. J. Fish. Aquat. Sci. 55, 2127–2140 (1998).

    Article  Google Scholar 

  • 44.

    Hurtado-Daz, M., Riojas-Rodrguez, H., Rothenberg, S., Gomez-Dantes, H. & Cifuentes, E. Impact of climate variability on the incidence of dengue in Mexico. Trop. Med. Int. Heal. 12, 1327–1337 (2007).

  • 45.

    Mordecai, E. A. et al. Thermal biology of mosquito‐borne disease. Ecol. Lett. 22, 1690–1708 (2019).

  • 46.

    Carrington, L. B., Armijos, M. V., Lambrechts, L., Barker, C. M. & Scott, T. W. Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PLoS ONE 8, e58824 (2013).

  • 47.

    Ngugi, H. N. et al. Characterization and productivity profiles of Aedes aegypti (L.) breeding habitats across rural and urban landscapes in western and coastal Kenya. Parasit. Vectors 10, 331 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Lowe, R. et al. Nonlinear and delayed impacts of climate on dengue risk in Barbados: a modelling study. PLoS Med. 15, e1002613 (2018).

  • 49.

    Laureano-Rosario, A. E., Garcia-Rejon, J. E., Gomez-Carro, S., Farfan-Ale, J. A. & Muller-Kargera, F. E. Modelling dengue fever risk in the State of Yucatan, Mexico using regional-scale satellite-derived sea surface temperature. Acta Trop. 172, 50–57 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Li, C. et al. Modeling and projection of dengue fever cases in Guangzhou based on variation of weather factors. Sci. Total Environ. 605–606, 867–873 (2017).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 51.

    Li, C. F., Lim, T. W., Han, L. L. & Fang, R. Rainfall, abundance of Aedes aegypti and dengue infection in Selangor, Malaysia. Southeast Asian J. Trop. Med Public Health 16, 560–568 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Johansson, M. A., Dominici, F. & Glass, G. E. Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl. Trop. Dis. 3, e382 (2009).

  • 53.

    Kenneson, A. et al. Social-ecological factors and preventive actions decrease the risk of dengue infection at the household-level: Results from a prospective dengue surveillance study in Machala, Ecuador. PLoS Negl. Trop. Dis. 11, e0006150 (2017).

  • 54.

    Reich, N. G. et al. Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. J. R. Soc. Interface 10, 20130414 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Wen, J. et al. Dengue virus-reactive CD8+ T cells mediate cross-protection against subsequent Zika virus challenge. Nat. Commun. 8, 1459 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 56.

    Rodriguez-Barraquer, I., Salje, H. & Cummings, D. A. Opportunities for improved surveillance and control of dengue from age-specific case data. eLife 8, e45474 (2019).

  • 57.

    Stoddard, S. T. et al. House-to-house human movement drives dengue virus transmission. Proc. Natl Acad. Sci. USA 110, 994–999 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 58.

    Wesolowski, A. et al. Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc. Natl Acad. Sci. USA 112, 11887–11892 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 59.

    Vaidya, A., Bravo-Salgado, A. D. & Mikler, A. R.. Modeling climate-dependent population dynamics of mosquitoes to guide public health policies. in Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics Vol. 14 (eds Baldi, P. & Wang, W.) 380–389 (Newport Beach, CA, USA, 2014).

  • 60.

    Schmidt, C. A., Comeau, G., Monaghan, A. J., Williamson, D. J. & Ernst, K. C. Effects of desiccation stress on adult female longevity in Aedes aegypti and Ae. albopictus (Diptera: Culicidae): results of a systematic review and pooled survival analysis. Parasit. Vectors 11, 267 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Vazquez-Prokopec, G. M., Galvin, W. A., Kelly, R. & Kitron, U. A new, cost-effective, battery-powered aspirator for adult mosquito collections. J. Med. Entomol. 46, 1256–1259 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Waggoner, J. J. et al. Single-reaction multiplex reverse transcription PCR for detection of Zika, chikungunya, and dengue viruses. Emerg. Infect. Dis. 22, 1295–1297 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Lanciotti, R. S., Calisher, C. H., Gubler, D. J., Chang, G. J. & Vorndam, A. V. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J. Clin. Microbiol. 30, 545–551 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Grossi-Soyster, E. N. et al. Serological and spatial analysis of alphavirus and flavivirus prevalence and risk factors in a rural community in western Kenya. PLoS Negl. Trop. Dis. 11, e0005998 (2017).

  • 65.

    Palamara, G. M. et al. Inferring the temperature dependence of population parameters: the effects of experimental design and inference algorithm. Ecol. Evol. 4, 4736–4750 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Team R. C. R.: A language and environment for statistical computing. R Found Stat. Comput. https://www.r-project.org (2018).

  • 67.

    Shocket, M. S. et al. Environmental drivers of vector-borne disease. in Population Biology of Vector-borne Diseases. (eds Drake, J. M., Bonsall, M. B. & Strand, M. R.) 85–118 (Oxford University Press, 2020).

  • 68.

    Colón-González, F. J., Bentham, G. & Lake, I. R. Climate variability and dengue fever in warm and humid Mexico. Am. J. Trop. Med. Hyg. 84, 757–763 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Wang, C., Jiang, B., Fan, J., Wang, F. & Liu, Q. A study of the dengue epidemic and meteorological factors in Guangzhou, China, by using a zero-inflated Poisson regression model. Asia Pac. J. Public Heal. 26, 48–57 (2014).

    Article  Google Scholar 

  • 70.

    Minh An, D. T. & Rocklöv, J. Epidemiology of dengue fever in Hanoi from 2002 to 2010 and its meteorological determinants. Glob. Health Action. 7, 23074 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 71.

    Wu, P.-C., Guoa, H.-R., Lung, S.-C., Lin, C.-Y. & Su, H.-J. Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop. 103, 50–57 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 72.

    Karim, M. N., Munshi, S. U., Anwar, N. & Alam, M. S. Climatic factors influencing dengue cases in Dhaka city: a model for dengue prediction. Indian J. Med. Res. 136, 32–39 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 73.

    Nakhapakorn, K. & Tripathi, N. An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence. Int. J. Health Geogr. 4, 13 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  • 74.

    Gharbi, M. et al. Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors. BMC Infect. Dis. 11, 166 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Sharmin, S., Glass, K., Viennet, E. & Harley, D. Interaction of mean temperature and daily fluctuation influences dengue incidence in Dhaka, Bangladesh. PLoS Negl. Trop. Dis. 9, e0003901 (2015).

  • 76.

    Sriprom, M., Chalvet-Monfray, K., Chaimane, T., Vongsawat, K. & Bicout, D. J. Monthly district level risk of dengue occurrences in Sakon Nakhon Province, Thailand. Sci. Total Environ. 408, 5521–5528 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 77.

    Martínez-Bello, D., López-Quílez, A. & Prieto, A. T. Spatiotemporal modeling of relative risk of dengue disease in Colombia. Stoch. Environ. Res. Risk Assess. 32, 1587–1601 (2018).

    Article  Google Scholar 

  • 78.

    Didan, K., Barreto Munoz, A., Solano, R. & Huete, A. MODIS vegetation index user’s guide (MOD13 Series) [Internet]. https://vip.arizona.edu/documents/MODIS/MODIS_VI_UsersGuide_June_2015_C6.pdf (2015).

  • 79.

    Sulla-Menashe, D. & Friedl, M. A. User guide to collection 6 MODIS land cover (MCD12Q1 and MCD12C1) product. https://icdc.cen.uni-hamburg.de/fileadmin/user_upload/icdc_Dokumente/MODIS/mcd12_user_guide_v6.pdf (2018).


  • Source: Ecology - nature.com

    Keeping an eye on the fusion future

    Improving sanitation for the world’s most vulnerable people