in

Composition and acquisition of the microbiome in solitary, ground-nesting alkali bees

  • 1.

    Dharampal, P. S., Hetherington, M. C. & Steffan, S. A. Microbes make the meal: Oligolectic bees require microbes within their host pollen to thrive. Ecol. Entomol. https://doi.org/10.1111/een.12926 (2020).

    Article  Google Scholar 

  • 2.

    Sonnenburg, J. L. & Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Suzuki, T. A. Links between natural variation in the microbiome and host fitness in wild mammals. Integr. Comp. Biol. 57, 756–769 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Kwong, W. K., Mancenido, A. L. & Moran, N. A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 4, 170003 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 6.

    Bo, T.-B. et al. Coprophagy prevention alters microbiome, metabolism, neurochemistry, and cognitive behavior in a small mammal. ISME J. https://doi.org/10.1038/s41396-020-0711-6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Sarkar, A. et al. The role of the microbiome in the neurobiology of social behaviour. Biol. Rev. 95, 12603 (2020).

    Article  Google Scholar 

  • 8.

    Vernier, C. L. et al. The gut microbiome defines social group membership in honey bee colonies. Sci. Adv. 6, 3431 (2020).

    ADS  Article  CAS  Google Scholar 

  • 9.

    Lemoine, M. M., Engl, T. & Kaltenpoth, M. Microbial symbionts expanding or constraining abiotic niche space in insects. Curr. Opin. Insect Sci. 39, 14–20 (2020).

    PubMed  Article  Google Scholar 

  • 10.

    Engel, P. et al. The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions. MBio. https://doi.org/10.1128/mBio.02164-15 (2006).

    Article  Google Scholar 

  • 11.

    Daisley, B. A., Chmiel, J. A., Pitek, A. P., Thompson, G. J. & Reid, G. Missing microbes in bees: How systematic depletion of key symbionts erodes immunity. Trends Microbiol. https://doi.org/10.1016/j.tim.2020.06.006 (2020).

    Article  PubMed  Google Scholar 

  • 12.

    Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl. Acad. Sci. 114, 4775–4780 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Zheng, H. et al. Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. MBio. https://doi.org/10.1128/mBio.01326-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Engel, P. & Moran, N. A. Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes 4, 60–65 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Lee, F. J., Rusch, D. B., Stewart, F. J., Mattila, H. R. & Newton, I. L. G. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ. Microbiol. 17, 796–815 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Anderson, K. E. et al. Hive-stored pollen of honey bees: Many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol. Ecol. 23, 5904–5917 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Dharampal, P. S., Carlson, C., Currie, C. R. & Steffan, S. A. Pollen-borne microbes shape bee fitness. Proc. R. Soc. B Biol. Sci. 286, 20182894 (2019).

    CAS  Article  Google Scholar 

  • 19.

    Rothman, J. A., Leger, L., Graystock, P., Russell, K. & McFrederick, Q. S. The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ. Microbiol. 21, 1462–2920. https://doi.org/10.1111/1462-2920.14641 (2019).

    CAS  Article  Google Scholar 

  • 20.

    Wu, Y. et al. Honey bee ( Apis mellifera ) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract. Microb. Biotechnol. 13, 1201–1212 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Praet, J. et al. Large-scale cultivation of the bumblebee gut microbiota reveals an underestimated bacterial species diversity capable of pathogen inhibition. Environ. Microbiol. 20, 214–227 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Forsgren, E., Olofsson, T. C., Vásquez, A. & Fries, I. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41, 99–108 (2010).

    Article  Google Scholar 

  • 23.

    Cariveau, D. P., Elijah Powell, J., Koch, H., Winfree, R. & Moran, N. A. Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J. 8, 2369–2379 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Raymann, K., Shaffer, Z. & Moran, N. A. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 15, e2001861 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 25.

    Schwarz, R. S., Moran, N. A. & Evans, J. D. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. Proc. Natl. Acad. Sci. 113, 9345–9350 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 26.

    Maes, P. W., Rodrigues, A. P., Oliver, R., Mott, B. M. & Anderson, K. E. Diet related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honey bee (Apis mellifera). Mol. Ecol. 25, 5439–5450 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. 108, 19288–19292 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 28.

    Evans, J. D. & Lopez, D. L. Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 97, 752–756 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Emery, O., Schmidt, K. & Engel, P. Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Mol. Ecol. 26, 2576–2590 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad. Sci. 109, 11002–11007 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 31.

    Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Micro 14, 374–384 (2016).

    CAS  Article  Google Scholar 

  • 32.

    McFrederick, Q. S. & Rehan, S. M. Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Mol. Ecol. 25, 2302–2311 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    McFrederick, Q. S. et al. Flowers and wild megachilid bees share microbes. Microb. Ecol. 73, 188–200 (2017).

    PubMed  Article  Google Scholar 

  • 34.

    McFrederick, Q. S. et al. Environment or kin: whence do bees obtain acidophilic bacteria?. Mol. Ecol. 21, 1754–1768 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    McFrederick, Q. S., Wcislo, W. T., Hout, M. C. & Mueller, U. G. Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees. FEMS Microbiol. Ecol. 88, 398–406 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Graystock, P., Rehan, S. M. & McFrederick, Q. S. Hunting for healthy microbiomes: Determining the core microbiomes of Ceratina, Megalopta, and Apis bees and how they associate with microbes in bee collected pollen. Conserv. Genet. 18, 701–711 (2017).

    Article  Google Scholar 

  • 37.

    McFrederick, Q. S. et al. Specificity between lactobacilli and hymenopteran hosts is the exception rather than the rule. Appl. Environ. Microbiol. 79, 1803–1812 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Sanders, J. G. et al. Stability and phylogenetic correlation in gut microbiota: Lessons from ants and apes. Mol. Ecol. 23, 1268–1283 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, 1–17 (2017).

    Article  Google Scholar 

  • 40.

    Rothman, J. A., Andrikopoulos, C., Cox-Foster, D. & McFrederick, Q. S. Floral and foliar source affect the bee nest microbial community. Microb. Ecol. 78, 506–516 (2019).

    PubMed  Article  Google Scholar 

  • 41.

    Cohen, H., McFrederick, Q. S. & Philpott, S. M. Environment shapes the microbiome of the blue orchard bee, Osmia lignaria. Microb. Ecol. 80, 897–907 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Muñoz-Colmenero, M. et al. Differences in honey bee bacterial diversity and composition in agricultural and pristine environments—A field study. Apidologie. https://doi.org/10.1007/s13592-020-00779-w (2020).

    Article  Google Scholar 

  • 43.

    Kapheim, K. M. et al. Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS ONE 10, 1–14 (2015).

    Article  CAS  Google Scholar 

  • 44.

    Elijah Powell, J., Eiri, D., Moran, N. A. & Rangel, J. Modulation of the honey bee queen microbiota: Effects of early social contact. PLoS ONE 13, 1–14 (2018).

    Google Scholar 

  • 45.

    Tarpy, D. R., Mattila, H. R. & Newton, I. L. G. Development of the honey bee gut microbiome throughout the queen-rearing process. Appl. Environ. Microbiol. 81, 3182–3191 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Dong, Z. X. et al. Colonization of the gut microbiota of honey bee (Apis mellifera) workers at different developmental stages. Microbiol. Res. 231, 126370 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    D’Alvise, P. et al. The impact of winter feed type on intestinal microbiota and parasites in honey bees. Apidologie 49, 252–264 (2018).

    Article  CAS  Google Scholar 

  • 48.

    Huang, S. K. et al. Influence of feeding type and Nosema ceranae infection on the gut microbiota of Apis cerana workers. mSystems 3, 177–195 (2018).

    Article  Google Scholar 

  • 49.

    Rothman, J. A., Carroll, M. J., Meikle, W. G., Anderson, K. E. & McFrederick, Q. S. Longitudinal effects of supplemental forage on the Honey Bee (Apis mellifera) microbiota and inter- and intra-colony variability. Microb. Ecol. 76, 814–824 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Zhang, Y. et al. Nosema ceranae infection enhances Bifidobacterium spp. abundances in the honey bee hindgut. Apidologie 50, 353–362 (2019).

    Article  Google Scholar 

  • 51.

    Danforth, B. N., Minckley, R. L. & Neff, J. L. The Solitary Bees (Princeton University Press, Princeton, 2019).

    Google Scholar 

  • 52.

    Santos, P. K. F., Arias, M. C. & Kapheim, K. M. Loss of developmental diapause as prerequisite for social evolution in bees. Biol. Lett. 15, 20190398 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Harmon-Threatt, A. Influence of nesting characteristics on health of wild bee communities. Annu. Rev. Entomol. 65, 39–56 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Johansen, C., Mayer, D., Stanford, A. & Kious, C. Alkali Bees: Their Biology and Management for Alfalfa Seed Production in the Pacific Northwest (Publication, Pacific Northwest Cooperative Extension Service, Genesee, 1982).

    Google Scholar 

  • 55.

    Cane, J. H. A native ground-nesting bee (Nomia melanderi) sustainably managed to pollinate alfalfa across an intensively agricultural landscape. Apidologie 39, 315–323 (2008).

    Article  Google Scholar 

  • 56.

    Cane, J. H. Pollinating bees (Hymenoptera: Apiformes) of U.S. alfalfa compared for rates of pod and seed set. J. Econ. Entomol. 95, 22–27 (2002).

    PubMed  Article  Google Scholar 

  • 57.

    Batra, S. W. & Bohart, G. E. Alkali bees: Response of adults to pathogenic fungi in brood cells. Science 165, 607 (1969).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 58.

    Galbraith, D. A. et al. Investigating the viral ecology of global bee communities with high-throughput metagenomics. Sci. Rep. 8, 1–11 (2018).

    CAS  Article  Google Scholar 

  • 59.

    Bohart, G. E., Stephen, W. P. & Eppley, E. K. The biology of Heterostylum robustum (Diptera: Bombyliidae), a parasite of the alkali bee. Ann. Entomol. Soc. Am. 53, 425–435 (1960).

    Article  Google Scholar 

  • 60.

    Johansen, C. A., Mayer, D. F. & Eves, J. D. Biology and management of the alkali bee, Nomia melanderi Cockrell (Hymenoptera: Halictidae).Melanderii Cockrell (Hymenoptera: Halictidae).Melanderi (Washington State Entomology, Pullman, 1978).

    Google Scholar 

  • 61.

    Johansen, C. A. & Mayer, D. F. Pollinator Protection: A Bee and Pesticide Handbook (Wicwas Press, Kalamazoo, 1990).

    Google Scholar 

  • 62.

    Stephen, W. P. Solitary bees in North American agriculture: A perspective. In For Nonnative Crops, Whence Pollinators of the Future? (eds Strickler, K. & Cane, J. H.) 41–66 (Entomological Society of America, Annapolis, 2003).

    Google Scholar 

  • 63.

    Kapheim, K. M. et al. Draft genome assembly and population genetics of an agricultural pollinator, the solitary alkali bee (Halictidae: Nomia melanderi). G3 9, 625–634 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Batra, S. W. T. Aggression, territoriality, mating and nest aggregation of some solitary bees (Hymenoptera: Halictidae, Megachilidae, Colletidae, Anthophoridae). J. Kansas Entomol. Soc. 51, 547–559 (1978).

    Google Scholar 

  • 65.

    Mayer, D. F. & Miliczky, E. R. Emergence, male behavior, and mating in the alkali bee, Nomia melanderi Cockerell (Hymenoptera: Halictidae). J. Kansas Entomol. Soc. 71, 61–68 (1998).

    Google Scholar 

  • 66.

    Kapheim, K. M. & Johnson, M. M. Juvenile hormone, but not nutrition or social cues, affects reproductive maturation in solitary alkali bees (Nomia melanderi). J. Exp. Biol. https://doi.org/10.1242/jeb.162255 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 67.

    Koch, H. & Schmid-Hempel, P. Bacterial communities in central European bumble bees: Low diversity and high specificity. Microb. Ecol. 62, 121–133 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Martinson, V. G., Moy, J. & Moran, N. A. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl. Environ. Microbiol. 78, 2830–2840 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Powell, J. E., Martinson, V. G., Urban-Mead, K. & Moran, N. A. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol. 80, 7378–7387 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 70.

    Kapheim, K. M. & Johnson, M. M. Support for the reproductive ground plan hypothesis in a solitary bee: Links between sucrose response and reproductive status. Proc. R. Soc. B Biol. Sci. 284, 20162406 (2017).

    Article  CAS  Google Scholar 

  • 71.

    R Core Team. R: A Language and Environment for Statistical Computing (2019).

  • 72.

    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 73.

    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. BioRxiv. https://doi.org/10.1101/221499 (2017).

    Article  Google Scholar 

  • 74.

    Jari Oksanen, F. et al. vegan: Community Ecology Package (2019).

  • 75.

    McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 76.

    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 77.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 78.

    Lenth, R. emmeans: Estimated Marginal Means, Aka Least-Squares Means (2020).

  • 79.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 80.

    Lahti, L. & Shetty, S. Microbiome R Package (2012).

  • 81.

    Zheng, J. et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70, 2782–2858 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 82.

    Rummel, P. S. et al. Maize root and shoot litter quality controls short-term emissions and bacterial community structure of arable soil. Biogeosciences 17, 1181–1198 (2020).

    ADS  CAS  Article  Google Scholar 

  • 83.

    McFrederick, Q. S., Vuong, H. Q. & Rothman, J. A. Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers. Int. J. Syst. Evol. Microbiol. 68, 1879–1884 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 84.

    Wittouck, S., Wuyts, S., Meehan, C. J., van Noort, V. & Lebeer, S. A genome-based species taxonomy of the Lactobacillus genus complex. mSystems. https://doi.org/10.1128/mSystems.00264-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 85.

    Engel, P. & Moran, N. A. The gut microbiota of insects—Diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 86.

    Cane, J. H., Dobson, H. E. M. & Boyer, B. Timing and size of daily pollen meals eaten by adult females of a solitary bee (Nomia melanderi) (Apiformes: Halictidae). Apidologie 48, 17–30 (2016).

    Article  CAS  Google Scholar 

  • 87.

    Engel, P., Bartlett, K. D. & Moran, N. A. The bacterium Frischella perrara causes scab formation in the gut of its honeybee host. MBio 6, 1–8 (2015).

    Article  CAS  Google Scholar 

  • 88.

    Martinson, V. G. et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–628 (2011).

    PubMed  Article  Google Scholar 

  • 89.

    Vásquez, A. & Olofsson, T. C. The lactic acid bacteria involved in the production of bee pollen and bee bread. J. Apic. Res. 48, 189–195 (2009).

    Article  Google Scholar 

  • 90.

    Vuong, H. Q. & McFrederick, Q. S. Comparative genomics of wild bee and flower isolated Lactobacillus reveals potential adaptation to the bee host. Genome Biol. Evol. 11, 2151–2161 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Scientists as engaged citizens

    New fiber optic temperature sensing approach to keep fusion power plants running