Brevik, E. C. et al. The interdisciplinary nature of SOIL. Soil 1(1), 117–129. https://doi.org/10.5194/soil-1-117-2015 (2015).
Google Scholar
Liu, X. et al. Heavy metal concentrations of soils near the large opencast coal mine pits in China. Chemosphere 244, 125360. https://doi.org/10.1016/j.chemosphere.2019.125360 (2020).
Google Scholar
Imin, B., Abliz, A., Shi, Q., Liu, S. & Hao, L. Quantitatively assessing the risks and possible sources of toxic metals in soil from an arid, coal-dependent industrial region in NW China. J. Geochem. Explor. https://doi.org/10.1016/j.gexplo.2020.106505 (2020).
Google Scholar
Doran, J. W. & Parkin, T. B. Defining and assessing soil quality. Defin. Soil Qual. Sustain. Environ. 35, 1–21. https://doi.org/10.2136/sssaspecpub35.c1 (1994).
Google Scholar
Sun, H. et al. Effects of soil quality on effective ingredients of Astragalus mongholicus from the main cultivation regions in China. Ecol. Indic. 114, 106296. https://doi.org/10.1016/j.ecolind.2020.106296 (2020).
Google Scholar
Alloway, B. J. Sources of Heavy Metals and Metalloids in Soils. Heavy Metals in Soils 11–50 (Springer, 2013).
Google Scholar
Yang, Q. Q. et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 642, 690–700. https://doi.org/10.1016/j.scitotenv.2018.06.068 (2018).
Google Scholar
Huang, Y., Kuang, X., Cao, Y. & Bai, Z. The soil chemical properties of reclaimed land in an arid grassland dump in an opencast mining area in China. RSC Adv. 8(72), 41499–41508. https://doi.org/10.1039/c8ra08002j (2018).
Google Scholar
Liu, Z. J. et al. Soil quality assessment of Albic soils with different productivities for eastern China. Soil Till. Res. 140, 74–81. https://doi.org/10.1016/j.still.2014.02.010 (2014).
Google Scholar
Bhardwaj, A. K., Jasrotia, P., Hamilton, S. K. & Robertson, G. P. Ecological management of intensively cropped agro-ecosystems improves soil quality with sustained productivity. Agr. Ecosyst. Environ. 140(3–4), 419–429. https://doi.org/10.1016/j.agee.2011.01.005 (2011).
Google Scholar
Mendham, D. S. et al. Soil analyses as indicators of phosphorus response in young eucalypt plantations. Soil Sci. Soc. Am. J. 66(3), 959–968. https://doi.org/10.2136/sssaj2002.9590 (2002).
Google Scholar
Shukla, M. K., Lal, R. & Ebinger, M. Determining soil quality indicators by factor analysis. Soil Till. Res. 87(2), 194–204. https://doi.org/10.1016/j.still.2005.03.011 (2006).
Google Scholar
Vasu, D. et al. Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau. India. Geoderma. 282, 70–79. https://doi.org/10.1016/j.geoderma.2016.07.010 (2016).
Google Scholar
Mishra, G. et al. Soil quality assessment under shifting cultivation and forests in Northeastern Himalaya of India. Arch. Agron. Soil Sci. 63(10), 1355–1368. https://doi.org/10.1080/03650340.2017.1281390 (2017).
Google Scholar
Li, X. Y., Wang, D. Y., Ren, Y. X., Wang, Z. M. & Zhou, Y. H. Soil quality assessment of croplands in the black soil zone of Jilin Province, China: Establishing a minimum data set model. Ecol. Indic. 107, 105251. https://doi.org/10.1016/j.ecolind.2019.03.028 (2019).
Google Scholar
Zhao, Q. Q. et al. Effects of freshwater inputs on soil quality in the Yellow River Delta. China. Ecol. Indic. 98, 619–626. https://doi.org/10.1016/j.ecolind.2018.11.041 (2019).
Google Scholar
Li, F. P., Liu, W., Lu, Z. B., Mao, L. C. & Xiao, Y. H. A multi-criteria evaluation system for arable land resource assessment. Environ. Monit. Assess. https://doi.org/10.1007/s10661-019-8023-x (2020).
Google Scholar
Raiesi, F. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecol. Indic. 75, 307–320. https://doi.org/10.1016/j.ecolind.2016.12.049 (2017).
Google Scholar
Zhou, Y. et al. Assessment of soil quality indexes for different land use types in typical steppe in the loess hilly area, China. Ecol. Indic. 118, 106743. https://doi.org/10.1016/j.ecolind.2020.106743 (2020).
Google Scholar
Cheng, W. et al. Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using positive matrix factorization. J. Hazard. Mater. 387, 121666. https://doi.org/10.1016/j.jhazmat.2019.121666 (2020).
Google Scholar
Zhao, X., Tong, M., He, Y., Han, X. & Wang, L. A comprehensive, locally adapted soil quality indexing under different land uses in a typical watershed of the eastern Qinghai-Tibet Plateau. Ecol. Ind. 125, 107445. https://doi.org/10.1016/j.ecolind.2021.107445 (2021).
Google Scholar
Zhang, W. S. et al. Comprehensive assessment methodology of soil quality under different land use conditions. Trans. Chin. Soc. Agric. Eng. 26(12), 311–318. https://doi.org/10.3969/j.issn.1002-6819.2010.12.053 (2010).
Google Scholar
Batjargal, T., Otgonjargal, E., Baek, K. & Yang, J. S. Assessment of metals contamination of soils in Ulaanbaatar, Mongolia. J. Hazard. Mater. 184(1–3), 872–876. https://doi.org/10.1016/j.jhazmat.2010.08.106 (2010).
Google Scholar
Ngole-Jeme, V. M. Heavy metals in soils along unpaved roads in south west Cameroon: Contamination levels and health risks. Ambio 45(3), 374–386. https://doi.org/10.1007/s13280-015-0726-9 (2016).
Google Scholar
China Soil Census Office. China Soil Census Data[M] (China National Agricultural Press, Beijing, 1997).
Chen, H., Teng, Y., Lu, S., Wang, Y. & Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 512, 143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025 (2015).
Google Scholar
Wang, Y., Duan, X. & Wang, L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Sci. Total Environ. 710, 134953. https://doi.org/10.1016/j.scitotenv.2019.134953 (2020).
Google Scholar
Bao, S. D. Soil Agrochemical Analysis 25–114 (China Agricultural Press, 2000).
Wang, M. E., Peng, C., & Chen, W. P. Impacts of industrial zone in arid area in Ningxia province on the accumulation of heavy metals in agricultural soils. Chin. J. Envir. Sci., 37(9), 3532–3539. https://doi.org/10.13227/j.hjkx.2016.09.035 (2016).
Google Scholar
Xu, Z. et al. Characteristics and sources of heavy metal pollution in desert steppe soil related to transportation and industrial activities. Environ. Sci. Pollut. Res. 27, 38835–38848. https://doi.org/10.1007/s11356-020-09877-9 (2020).
Google Scholar
Qi, Y. B. et al. Evaluating soil quality indices in an agricultural region of Jiangsu Province. China. Geoderma. 149(3–4), 325–334. https://doi.org/10.1016/j.geoderma.2008.12.015 (2009).
Google Scholar
Hu, Q., Chen, W. F., Song, X. L., Dong, Y. J. & Liu, Z. Q. Effects of reclamation/cultivation on soil quality of Saline-alkali Soils in the yellow river delta. Acta Pedol. Sin. 57(4), 824–833. https://doi.org/10.11766/trxb201905050105 (2020).
Google Scholar
Qu, X. G., Sun, Y. X. & Fu, X. Y. Soil quality and stripping depth evaluation of tillage layer for construction of Qingdao new airport. Bull. Soil Water Conserv. 38(4), 202–206. https://doi.org/10.13961/j.cnki.stbctb.2018.04.033 (2018).
Google Scholar
Abd-Elwahed, M. S. Influence of long-term wastewater irrigation on soil quality and its spatial distribution. Ann. Agric. Sci. 63(2), 191–199. https://doi.org/10.1016/j.aoas.2018.11.004 (2018).
Google Scholar
CNEMC (China National Environmental Monitoring Center). The Background Values of Elements in Chinese Soils. 330–493 (Environmental Science Press of China, 1990).
Cheng, J. L., Shi, Z., Zhu, Y. W., Liu, C. & Li, H. Y. Differential characteristics and appraisal of heavy metals in agricultural soils of Zhejiang Province. J. Soil Water Conserv. 20(1), 103–107. https://doi.org/10.1016/S1872-2032(06)60052-8 (2006).
Google Scholar
Jin, G. Q. et al. Source apportionment of heavy metals in farmland soil with application of APCS-MLR model: A pilot study for restoration of farmland in Shaoxing City Zhejiang. China. Ecotox. Environ. Safe. 184, 109495. https://doi.org/10.1016/j.ecoenv.2019.109495 (2019).
Google Scholar
Marzaioli, R., D’Ascoli, R., De Pascale, R. A. & Rutigliano, F. A. Soil quality in a Mediterranean area of Southern Italy as related to different land use types. Appl. Soil Ecol. 44(3), 205–212. https://doi.org/10.1016/j.apsoil.2009.12.007 (2010).
Google Scholar
Zhao, N., Meng, P., Zhang, J. S., Lu, S. & Cheng, Z. Q. Soil quality assessment of Robinia psedudoacia plantations with various ages in the Grain-for-Green Program in hilly area of North China. Yingyong Shengtai Xuebao https://doi.org/10.13287/j.1001-9332.2014.0038 (2014).
Google Scholar
Zheng, Q. et al. Comprehensive method for evaluating soil quality in cotton fields in Xinjiang. China. Chin. J. Appl. Ecol. 29(4), 1291–1301. https://doi.org/10.13287/j.1001-9332.201804.029 (2018).
Google Scholar
Turrión, M. B. et al. Soil phosphorus forms as quality indicators of soils under different vegetation covers. Sci. Total Environ. 378(1–2), 195–198. https://doi.org/10.1016/j.scitotenv.2007.01.037 (2007).
Google Scholar
Barbosa, E. R. M. et al. Short-term effect of nutrient availability and rainfall distribution on biomass production and leaf nutrient content of Savanna tree species. PLoS ONE 9(3), e92619. https://doi.org/10.1371/journal.pone.0092619 (2014).
Google Scholar
Marty, C., Houle, D., Gagnon, C. & Courchesne, F. The relationships of soil total nitrogen concentrations, pools and C: N ratios with climate, vegetation types and nitrate deposition in temperate and boreal forests of eastern Canada. CATENA 152, 163–172. https://doi.org/10.1016/j.catena.2017.01.014 (2017).
Google Scholar
Chen, Z. F. et al. Evaluation on cultivated-layer soil quality of sloping farmland in Yunnan based on soil management assessment framework (SMAF). Trans. Chin. Soc. Agric. Eng. 35(03), 256–267. https://doi.org/10.11975/j.issn.1002-6819.2019.03.032 (2019).
Google Scholar
Ding, J. X. et al. Spatial distribution of the herbaceous layer and its relationship to soil physical–chemical properties in the southern margin of the Gurbantonggut Desert, northwestern China. Acta Ecol. Sin. 36(5), 327–332. https://doi.org/10.1016/j.chnaes.2016.06.006 (2016).
Google Scholar
Güntner, A., Seibert, J. & Uhlenbrook, S. Modeling spatial patterns of saturated areas: An evaluation of different terrain indices. Water Resour. Res. https://doi.org/10.1029/2003wr002864 (2004).
Google Scholar
Yenilmez, F., Kuter, N., Emil, M. K. & Aksoy, A. Evaluation of pollution levels at an abandoned coal mine site in Turkey with the aid of GIS. Int. J. Coal Geol. 86(1), 12–19. https://doi.org/10.1016/j.coal.2010.11.012 (2011).
Google Scholar
Kronbauer, M. A. et al. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2013.02.066 (2013).
Google Scholar
Masto, R. E. et al. Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield, India. Solid. Earth. 6(3), 811. https://doi.org/10.5194/se-6-811-2015 (2015).
Google Scholar
Han, Y. et al. Effects of opencast coal mining on soil properties and plant communities of grassland. Chin. J. Ecol. 38(11), 3425–3422. https://doi.org/10.13292/j.1000-4890.201911.011 (2019).
Google Scholar
Liu, J., Wu, L. C., Chen, D., Li, M. & Wei, C. J. Soil quality assessment of different Camellia oleifera stands in mid-subtropical China. Appl. Soil Ecol. 113, 29–35. https://doi.org/10.1016/j.apsoil.2017.01.010 (2017).
Google Scholar
Yu, P. J., Liu, S. W., Zhang, L., Li, Q. & Zhou, D. W. Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China. Sci. Total Environ. 616–617, 564–571. https://doi.org/10.1016/j.scitotenv.2017.10.301 (2018).
Google Scholar
Liu, Q. Q., Zhang, T., Wang, C. & Liu, J. H. Comparison of vegetation composition and soil fertility quality inside and outside the wind farm. J. Inner Mongolia Agric. Univ. (nat. Sci. Edn.) 41(02), 30–36. https://doi.org/10.16853/j.cnki.1009-3575.2020.02.006 (2020).
Google Scholar
Sheldrick, W., Syers, J. K. & Lingard, J. Contribution of livestock excreta to nutrient balances. Nutr. Cycl. Agroecosys. 66(2), 119–131. https://doi.org/10.1023/a:1023944131188 (2003).
Google Scholar
Kasahara, M., Fujii, S., Tanikawa, T. & Mori, A. S. Ungulates decelerate litter decomposition by altering litter quality above and below ground. Eur. J. Forest Res. 135(5), 849–856. https://doi.org/10.1007/s10342-016-0978-3 (2016).
Google Scholar
Zhan, T. Y. et al. Meta-analysis demonstrating that moderate grazing can improve the soil quality across China’s grassland ecosystems. Appl. Soil Ecol. 147, 103438. https://doi.org/10.1016/j.apsoil.2019.103438 (2020).
Google Scholar
Liu, X. Y., Bai, Z. K., Zhou, W., Cao, Y. G. & Zhang, G. J. Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau. China. Ecol. Eng. 98, 228–239. https://doi.org/10.1016/j.ecoleng.2016.10.078 (2017).
Google Scholar
Sun, L. et al. Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. CATENA 175, 101–109. https://doi.org/10.1016/j.catena.2018.12.014 (2019).
Google Scholar
Yang, S. L., Zhou, D. Q., Yu, H. Y., Wei, R. & Pan, B. Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River. China. Environ. Pollut. 177, 64–70. https://doi.org/10.1016/j.envpol.2013.01.044 (2013).
Google Scholar
Zhao, F. J., Ma, Y., Zhu, Y. G., Tang, Z. & McGrath, S. P. Soil Contamination in China: Current Status and Mitigation Strategies. Environ. Sci. Technol. 49(2), 750–759. https://doi.org/10.1021/es5047099 (2014).
Google Scholar
Wang, Y. Z., Duan, X. J. & Wang, L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134953 (2019).
Google Scholar
Nehrani, S. H. et al. Quantification of soil quality under semi-arid agriculture in the northwest of Iran. Ecol. Indic. 108, 105770. https://doi.org/10.1016/j.ecolind.2019.105770 (2020).
Google Scholar
Huang, Y. et al. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manage. 207, 159–168. https://doi.org/10.1016/j.jenvman.2017.10.072 (2018).
Google Scholar
Qu, C. S. et al. Spatial distribution, risk and potential sources of lead in soils in the vicinity of a historic industrial site. Chemosphere 205, 244–252. https://doi.org/10.1016/j.chemosphere.2018.04.119 (2018).
Google Scholar
Charlesworth, S., Everett, M., McCarthy, R., Ordóñez, A. & de Miguel, E. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ. Int. 29(5), 563–573. https://doi.org/10.1016/s0160-4120(03)00015-1 (2003).
Google Scholar
Liang, J. et al. Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chem. Eng. J. 273, 101–110. https://doi.org/10.1016/j.cej.2015.03.069 (2015).
Google Scholar
Liang, J. et al. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan. China. Environ. Pollut. 225, 681–690. https://doi.org/10.1016/j.envpol.2017.03.057 (2017).
Google Scholar
Chen, H., Lu, X. W., Li, L. Y., Gao, T. N. & Chang, Y. Y. Metal contamination in campus dust of Xi’an, China: A study based on multivariate statistics and spatial distribution. Sci. Total. Environ. 484, 27–35. https://doi.org/10.1016/j.scitotenv.2014.03.026 (2014).
Google Scholar
Adachi, K. & Tainosho, Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 30(8), 1009–1017. https://doi.org/10.1016/j.envint.2004.04.004 (2004).
Google Scholar
Garcia-Guinea, J. et al. Influence of accumulation of heaps of steel slag on the environment: Determination of heavy metals content in the soils. An. Acad. Bras. Cienc. 82(2), 267–277. https://doi.org/10.1590/S0001-37652010000200003 (2010).
Google Scholar
Fan, X. G., Mi, W. B., Ma, Z. N. & Wang, T. Y. Spatial and temporal characteristics of heavy metal concentration of surface soil in Hebin industrial park in Shizuishan northwest China. Chin. J. Envir. Sci. 34(5), 1887–1894. https://doi.org/10.13227/j.hjkx.2013.05.033 (2013).
Google Scholar
Huang, T., Yue, X. J., Ge, X. Z. & Wang, X. D. Evaluation of soil quality on gully region of loess plateau based on principal component analysis. Agri. Res. Arid Areas. 28(03), 141–147. https://doi.org/10.1016/S1002-0160(10)60014-8 (2010).
Google Scholar
Jiang, L. B. et al. Co-pelletization of sewage sludge and biomass: The density and hardness of pellet. Bioresour. Technol. 166, 435–443. https://doi.org/10.1016/j.biortech.2014.05.077 (2014).
Google Scholar
Oumenskou, H. et al. Multivariate statistical analysis for spatial evaluation of physicochemical properties of agricultural soils from Beni-Amir irrigated perimeter, Tadla plain, Morocco. Geol. Ecol. Landsc. 3(2), 83–94 (2019).
Google Scholar
Liu, Y., Wang, L., Liu, B. H. & Henderson, M. Observed changes in shallow soil temperatures in Northeast China, 1960–2007. Clim. Res. 67(1), 31–42. https://doi.org/10.3354/cr01351 (2016).
Google Scholar
Jiang, Y. F. et al. Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou. China. Ecotox. Environ. Safe. 126, 154–162. https://doi.org/10.1016/j.ecoenv.2015.12.037 (2016).
Google Scholar
Frohne, T. & Rinklebe, J. Biogeochemical fractions of mercury in soil profiles of two different floodplain ecosystems in Germany. Water Air Soil Poll. 224(6), 1591. https://doi.org/10.1007/s11270-013-1591-4 (2013).
Google Scholar
Stefanowicz, A. M., Kapusta, P., Zubek, S., Stanek, M. & Woch, M. W. Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn–Pb mining sites. Chemosphere 240, 124922. https://doi.org/10.1016/j.chemosphere.2019.124922 (2020).
Google Scholar
Source: Ecology - nature.com