in

Comprehensive evaluation of soil quality in a desert steppe influenced by industrial activities in northern China

  • 1.

    Brevik, E. C. et al. The interdisciplinary nature of SOIL. Soil 1(1), 117–129. https://doi.org/10.5194/soil-1-117-2015 (2015).

    Article 

    Google Scholar 

  • 2.

    Liu, X. et al. Heavy metal concentrations of soils near the large opencast coal mine pits in China. Chemosphere 244, 125360. https://doi.org/10.1016/j.chemosphere.2019.125360 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Imin, B., Abliz, A., Shi, Q., Liu, S. & Hao, L. Quantitatively assessing the risks and possible sources of toxic metals in soil from an arid, coal-dependent industrial region in NW China. J. Geochem. Explor. https://doi.org/10.1016/j.gexplo.2020.106505 (2020).

    Article 

    Google Scholar 

  • 4.

    Doran, J. W. & Parkin, T. B. Defining and assessing soil quality. Defin. Soil Qual. Sustain. Environ. 35, 1–21. https://doi.org/10.2136/sssaspecpub35.c1 (1994).

    Article 

    Google Scholar 

  • 5.

    Sun, H. et al. Effects of soil quality on effective ingredients of Astragalus mongholicus from the main cultivation regions in China. Ecol. Indic. 114, 106296. https://doi.org/10.1016/j.ecolind.2020.106296 (2020).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Alloway, B. J. Sources of Heavy Metals and Metalloids in Soils. Heavy Metals in Soils 11–50 (Springer, 2013).

    Book 

    Google Scholar 

  • 7.

    Yang, Q. Q. et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 642, 690–700. https://doi.org/10.1016/j.scitotenv.2018.06.068 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Huang, Y., Kuang, X., Cao, Y. & Bai, Z. The soil chemical properties of reclaimed land in an arid grassland dump in an opencast mining area in China. RSC Adv. 8(72), 41499–41508. https://doi.org/10.1039/c8ra08002j (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Liu, Z. J. et al. Soil quality assessment of Albic soils with different productivities for eastern China. Soil Till. Res. 140, 74–81. https://doi.org/10.1016/j.still.2014.02.010 (2014).

    Article 

    Google Scholar 

  • 10.

    Bhardwaj, A. K., Jasrotia, P., Hamilton, S. K. & Robertson, G. P. Ecological management of intensively cropped agro-ecosystems improves soil quality with sustained productivity. Agr. Ecosyst. Environ. 140(3–4), 419–429. https://doi.org/10.1016/j.agee.2011.01.005 (2011).

    Article 

    Google Scholar 

  • 11.

    Mendham, D. S. et al. Soil analyses as indicators of phosphorus response in young eucalypt plantations. Soil Sci. Soc. Am. J. 66(3), 959–968. https://doi.org/10.2136/sssaj2002.9590 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Shukla, M. K., Lal, R. & Ebinger, M. Determining soil quality indicators by factor analysis. Soil Till. Res. 87(2), 194–204. https://doi.org/10.1016/j.still.2005.03.011 (2006).

    Article 

    Google Scholar 

  • 13.

    Vasu, D. et al. Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau. India. Geoderma. 282, 70–79. https://doi.org/10.1016/j.geoderma.2016.07.010 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Mishra, G. et al. Soil quality assessment under shifting cultivation and forests in Northeastern Himalaya of India. Arch. Agron. Soil Sci. 63(10), 1355–1368. https://doi.org/10.1080/03650340.2017.1281390 (2017).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Li, X. Y., Wang, D. Y., Ren, Y. X., Wang, Z. M. & Zhou, Y. H. Soil quality assessment of croplands in the black soil zone of Jilin Province, China: Establishing a minimum data set model. Ecol. Indic. 107, 105251. https://doi.org/10.1016/j.ecolind.2019.03.028 (2019).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Zhao, Q. Q. et al. Effects of freshwater inputs on soil quality in the Yellow River Delta. China. Ecol. Indic. 98, 619–626. https://doi.org/10.1016/j.ecolind.2018.11.041 (2019).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Li, F. P., Liu, W., Lu, Z. B., Mao, L. C. & Xiao, Y. H. A multi-criteria evaluation system for arable land resource assessment. Environ. Monit. Assess. https://doi.org/10.1007/s10661-019-8023-x (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Raiesi, F. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecol. Indic. 75, 307–320. https://doi.org/10.1016/j.ecolind.2016.12.049 (2017).

    Article 

    Google Scholar 

  • 19.

    Zhou, Y. et al. Assessment of soil quality indexes for different land use types in typical steppe in the loess hilly area, China. Ecol. Indic. 118, 106743. https://doi.org/10.1016/j.ecolind.2020.106743 (2020).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Cheng, W. et al. Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using positive matrix factorization. J. Hazard. Mater. 387, 121666. https://doi.org/10.1016/j.jhazmat.2019.121666 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 21.

    Zhao, X., Tong, M., He, Y., Han, X. & Wang, L. A comprehensive, locally adapted soil quality indexing under different land uses in a typical watershed of the eastern Qinghai-Tibet Plateau. Ecol. Ind. 125, 107445. https://doi.org/10.1016/j.ecolind.2021.107445 (2021).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Zhang, W. S. et al. Comprehensive assessment methodology of soil quality under different land use conditions. Trans. Chin. Soc. Agric. Eng. 26(12), 311–318. https://doi.org/10.3969/j.issn.1002-6819.2010.12.053 (2010).

    Article 

    Google Scholar 

  • 23.

    Batjargal, T., Otgonjargal, E., Baek, K. & Yang, J. S. Assessment of metals contamination of soils in Ulaanbaatar, Mongolia. J. Hazard. Mater. 184(1–3), 872–876. https://doi.org/10.1016/j.jhazmat.2010.08.106 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Ngole-Jeme, V. M. Heavy metals in soils along unpaved roads in south west Cameroon: Contamination levels and health risks. Ambio 45(3), 374–386. https://doi.org/10.1007/s13280-015-0726-9 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    China Soil Census Office. China Soil Census Data[M] (China National Agricultural Press, Beijing, 1997).

  • 26.

    Chen, H., Teng, Y., Lu, S., Wang, Y. & Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 512, 143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Wang, Y., Duan, X. & Wang, L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Sci. Total Environ. 710, 134953. https://doi.org/10.1016/j.scitotenv.2019.134953 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Bao, S. D. Soil Agrochemical Analysis 25–114 (China Agricultural Press, 2000).

    Google Scholar 

  • 29.

    Wang, M. E., Peng, C., & Chen, W. P. Impacts of industrial zone in arid area in Ningxia province on the accumulation of heavy metals in agricultural soils. Chin. J. Envir. Sci., 37(9), 3532–3539. https://doi.org/10.13227/j.hjkx.2016.09.035 (2016). 

    Article 

    Google Scholar 

  • 30.

    Xu, Z. et al. Characteristics and sources of heavy metal pollution in desert steppe soil related to transportation and industrial activities. Environ. Sci. Pollut. Res. 27, 38835–38848. https://doi.org/10.1007/s11356-020-09877-9 (2020).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Qi, Y. B. et al. Evaluating soil quality indices in an agricultural region of Jiangsu Province. China. Geoderma. 149(3–4), 325–334. https://doi.org/10.1016/j.geoderma.2008.12.015 (2009).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Hu, Q., Chen, W. F., Song, X. L., Dong, Y. J. & Liu, Z. Q. Effects of reclamation/cultivation on soil quality of Saline-alkali Soils in the yellow river delta. Acta Pedol. Sin. 57(4), 824–833. https://doi.org/10.11766/trxb201905050105 (2020).

    Article 

    Google Scholar 

  • 33.

    Qu, X. G., Sun, Y. X. & Fu, X. Y. Soil quality and stripping depth evaluation of tillage layer for construction of Qingdao new airport. Bull. Soil Water Conserv. 38(4), 202–206. https://doi.org/10.13961/j.cnki.stbctb.2018.04.033 (2018).

    Article 

    Google Scholar 

  • 34.

    Abd-Elwahed, M. S. Influence of long-term wastewater irrigation on soil quality and its spatial distribution. Ann. Agric. Sci. 63(2), 191–199. https://doi.org/10.1016/j.aoas.2018.11.004 (2018).

    Article 

    Google Scholar 

  • 35.

    CNEMC (China National Environmental Monitoring Center). The Background Values of Elements in Chinese Soils. 330–493 (Environmental Science Press of China, 1990).

  • 36.

    Cheng, J. L., Shi, Z., Zhu, Y. W., Liu, C. & Li, H. Y. Differential characteristics and appraisal of heavy metals in agricultural soils of Zhejiang Province. J. Soil Water Conserv. 20(1), 103–107. https://doi.org/10.1016/S1872-2032(06)60052-8 (2006).

    Article 

    Google Scholar 

  • 37.

    Jin, G. Q. et al. Source apportionment of heavy metals in farmland soil with application of APCS-MLR model: A pilot study for restoration of farmland in Shaoxing City Zhejiang. China. Ecotox. Environ. Safe. 184, 109495. https://doi.org/10.1016/j.ecoenv.2019.109495 (2019).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Marzaioli, R., D’Ascoli, R., De Pascale, R. A. & Rutigliano, F. A. Soil quality in a Mediterranean area of Southern Italy as related to different land use types. Appl. Soil Ecol. 44(3), 205–212. https://doi.org/10.1016/j.apsoil.2009.12.007 (2010).

    Article 

    Google Scholar 

  • 39.

    Zhao, N., Meng, P., Zhang, J. S., Lu, S. & Cheng, Z. Q. Soil quality assessment of Robinia psedudoacia plantations with various ages in the Grain-for-Green Program in hilly area of North China. Yingyong Shengtai Xuebao https://doi.org/10.13287/j.1001-9332.2014.0038 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 40.

    Zheng, Q. et al. Comprehensive method for evaluating soil quality in cotton fields in Xinjiang. China. Chin. J. Appl. Ecol. 29(4), 1291–1301. https://doi.org/10.13287/j.1001-9332.201804.029 (2018).

    Article 

    Google Scholar 

  • 41.

    Turrión, M. B. et al. Soil phosphorus forms as quality indicators of soils under different vegetation covers. Sci. Total Environ. 378(1–2), 195–198. https://doi.org/10.1016/j.scitotenv.2007.01.037 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Barbosa, E. R. M. et al. Short-term effect of nutrient availability and rainfall distribution on biomass production and leaf nutrient content of Savanna tree species. PLoS ONE 9(3), e92619. https://doi.org/10.1371/journal.pone.0092619 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Marty, C., Houle, D., Gagnon, C. & Courchesne, F. The relationships of soil total nitrogen concentrations, pools and C: N ratios with climate, vegetation types and nitrate deposition in temperate and boreal forests of eastern Canada. CATENA 152, 163–172. https://doi.org/10.1016/j.catena.2017.01.014 (2017).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Chen, Z. F. et al. Evaluation on cultivated-layer soil quality of sloping farmland in Yunnan based on soil management assessment framework (SMAF). Trans. Chin. Soc. Agric. Eng. 35(03), 256–267. https://doi.org/10.11975/j.issn.1002-6819.2019.03.032 (2019).

    Article 

    Google Scholar 

  • 45.

    Ding, J. X. et al. Spatial distribution of the herbaceous layer and its relationship to soil physical–chemical properties in the southern margin of the Gurbantonggut Desert, northwestern China. Acta Ecol. Sin. 36(5), 327–332. https://doi.org/10.1016/j.chnaes.2016.06.006 (2016).

    Article 

    Google Scholar 

  • 46.

    Güntner, A., Seibert, J. & Uhlenbrook, S. Modeling spatial patterns of saturated areas: An evaluation of different terrain indices. Water Resour. Res. https://doi.org/10.1029/2003wr002864 (2004).

    Article 

    Google Scholar 

  • 47.

    Yenilmez, F., Kuter, N., Emil, M. K. & Aksoy, A. Evaluation of pollution levels at an abandoned coal mine site in Turkey with the aid of GIS. Int. J. Coal Geol. 86(1), 12–19. https://doi.org/10.1016/j.coal.2010.11.012 (2011).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Kronbauer, M. A. et al. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2013.02.066 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 49.

    Masto, R. E. et al. Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield, India. Solid. Earth. 6(3), 811. https://doi.org/10.5194/se-6-811-2015 (2015).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Han, Y. et al. Effects of opencast coal mining on soil properties and plant communities of grassland. Chin. J. Ecol. 38(11), 3425–3422. https://doi.org/10.13292/j.1000-4890.201911.011 (2019).

    Article 

    Google Scholar 

  • 51.

    Liu, J., Wu, L. C., Chen, D., Li, M. & Wei, C. J. Soil quality assessment of different Camellia oleifera stands in mid-subtropical China. Appl. Soil Ecol. 113, 29–35. https://doi.org/10.1016/j.apsoil.2017.01.010 (2017).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Yu, P. J., Liu, S. W., Zhang, L., Li, Q. & Zhou, D. W. Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China. Sci. Total Environ. 616–617, 564–571. https://doi.org/10.1016/j.scitotenv.2017.10.301 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 53.

    Liu, Q. Q., Zhang, T., Wang, C. & Liu, J. H. Comparison of vegetation composition and soil fertility quality inside and outside the wind farm. J. Inner Mongolia Agric. Univ. (nat. Sci. Edn.) 41(02), 30–36. https://doi.org/10.16853/j.cnki.1009-3575.2020.02.006 (2020).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Sheldrick, W., Syers, J. K. & Lingard, J. Contribution of livestock excreta to nutrient balances. Nutr. Cycl. Agroecosys. 66(2), 119–131. https://doi.org/10.1023/a:1023944131188 (2003).

    Article 

    Google Scholar 

  • 55.

    Kasahara, M., Fujii, S., Tanikawa, T. & Mori, A. S. Ungulates decelerate litter decomposition by altering litter quality above and below ground. Eur. J. Forest Res. 135(5), 849–856. https://doi.org/10.1007/s10342-016-0978-3 (2016).

    Article 

    Google Scholar 

  • 56.

    Zhan, T. Y. et al. Meta-analysis demonstrating that moderate grazing can improve the soil quality across China’s grassland ecosystems. Appl. Soil Ecol. 147, 103438. https://doi.org/10.1016/j.apsoil.2019.103438 (2020).

    Article 

    Google Scholar 

  • 57.

    Liu, X. Y., Bai, Z. K., Zhou, W., Cao, Y. G. & Zhang, G. J. Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau. China. Ecol. Eng. 98, 228–239. https://doi.org/10.1016/j.ecoleng.2016.10.078 (2017).

    Article 

    Google Scholar 

  • 58.

    Sun, L. et al. Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. CATENA 175, 101–109. https://doi.org/10.1016/j.catena.2018.12.014 (2019).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Yang, S. L., Zhou, D. Q., Yu, H. Y., Wei, R. & Pan, B. Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River. China. Environ. Pollut. 177, 64–70. https://doi.org/10.1016/j.envpol.2013.01.044 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 60.

    Zhao, F. J., Ma, Y., Zhu, Y. G., Tang, Z. & McGrath, S. P. Soil Contamination in China: Current Status and Mitigation Strategies. Environ. Sci. Technol. 49(2), 750–759. https://doi.org/10.1021/es5047099 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 61.

    Wang, Y. Z., Duan, X. J. & Wang, L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134953 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Nehrani, S. H. et al. Quantification of soil quality under semi-arid agriculture in the northwest of Iran. Ecol. Indic. 108, 105770. https://doi.org/10.1016/j.ecolind.2019.105770 (2020).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Huang, Y. et al. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manage. 207, 159–168. https://doi.org/10.1016/j.jenvman.2017.10.072 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 64.

    Qu, C. S. et al. Spatial distribution, risk and potential sources of lead in soils in the vicinity of a historic industrial site. Chemosphere 205, 244–252. https://doi.org/10.1016/j.chemosphere.2018.04.119 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 65.

    Charlesworth, S., Everett, M., McCarthy, R., Ordóñez, A. & de Miguel, E. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ. Int. 29(5), 563–573. https://doi.org/10.1016/s0160-4120(03)00015-1 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 66.

    Liang, J. et al. Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chem. Eng. J. 273, 101–110. https://doi.org/10.1016/j.cej.2015.03.069 (2015).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Liang, J. et al. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan. China. Environ. Pollut. 225, 681–690. https://doi.org/10.1016/j.envpol.2017.03.057 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 68.

    Chen, H., Lu, X. W., Li, L. Y., Gao, T. N. & Chang, Y. Y. Metal contamination in campus dust of Xi’an, China: A study based on multivariate statistics and spatial distribution. Sci. Total. Environ. 484, 27–35. https://doi.org/10.1016/j.scitotenv.2014.03.026 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 69.

    Adachi, K. & Tainosho, Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 30(8), 1009–1017. https://doi.org/10.1016/j.envint.2004.04.004 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 70.

    Garcia-Guinea, J. et al. Influence of accumulation of heaps of steel slag on the environment: Determination of heavy metals content in the soils. An. Acad. Bras. Cienc. 82(2), 267–277. https://doi.org/10.1590/S0001-37652010000200003 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 71.

    Fan, X. G., Mi, W. B., Ma, Z. N. & Wang, T. Y. Spatial and temporal characteristics of heavy metal concentration of surface soil in Hebin industrial park in Shizuishan northwest China. Chin. J. Envir. Sci. 34(5), 1887–1894. https://doi.org/10.13227/j.hjkx.2013.05.033 (2013).

    Article 

    Google Scholar 

  • 72.

    Huang, T., Yue, X. J., Ge, X. Z. & Wang, X. D. Evaluation of soil quality on gully region of loess plateau based on principal component analysis. Agri. Res. Arid Areas. 28(03), 141–147. https://doi.org/10.1016/S1002-0160(10)60014-8 (2010).

    Article 

    Google Scholar 

  • 73.

    Jiang, L. B. et al. Co-pelletization of sewage sludge and biomass: The density and hardness of pellet. Bioresour. Technol. 166, 435–443. https://doi.org/10.1016/j.biortech.2014.05.077 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 74.

    Oumenskou, H. et al. Multivariate statistical analysis for spatial evaluation of physicochemical properties of agricultural soils from Beni-Amir irrigated perimeter, Tadla plain, Morocco. Geol. Ecol. Landsc. 3(2), 83–94 (2019).

    Article 

    Google Scholar 

  • 75.

    Liu, Y., Wang, L., Liu, B. H. & Henderson, M. Observed changes in shallow soil temperatures in Northeast China, 1960–2007. Clim. Res. 67(1), 31–42. https://doi.org/10.3354/cr01351 (2016).

    Article 

    Google Scholar 

  • 76.

    Jiang, Y. F. et al. Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou. China. Ecotox. Environ. Safe. 126, 154–162. https://doi.org/10.1016/j.ecoenv.2015.12.037 (2016).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Frohne, T. & Rinklebe, J. Biogeochemical fractions of mercury in soil profiles of two different floodplain ecosystems in Germany. Water Air Soil Poll. 224(6), 1591. https://doi.org/10.1007/s11270-013-1591-4 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 78.

    Stefanowicz, A. M., Kapusta, P., Zubek, S., Stanek, M. & Woch, M. W. Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn–Pb mining sites. Chemosphere 240, 124922. https://doi.org/10.1016/j.chemosphere.2019.124922 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Making the case for hydrogen in a zero-carbon economy

    Flight performance and the factors affecting the flight behaviour of Philaenus spumarius the main vector of Xylella fastidiosa in Europe