in

Conservation concerns associated with low genetic diversity for K’gari–Fraser Island dingoes

  • 1.

    Crowther, M. S., Fillios, M., Colman, N. & Letnic, M. An updated description of the Australian dingo (Canis dingo Meyer, 1793). J. Zool. 293(3), 192–203 (2014).

    Article 

    Google Scholar 

  • 2.

    Smith, B. P. et al. Taxonomic status of the Australian dingo: the case for Canis dingo Meyer, 1793. Zootaxa 4564, 173–197 (2019).

    Article 

    Google Scholar 

  • 3.

    Sillero-Zubiri, C., Hoffmann, M. & Macdonald, D. W. Canids: foxes, wolves, jackals and dogs: status survey and conservation action plan. (IUCN, 2004).

  • 4.

    Jackson, S. M. et al. The wayward dog: is the Australian native dog or dingo a distinct species?. Zootaxa 4317, 201–224 (2017).

    Article 

    Google Scholar 

  • 5.

    Cairns, K. M. What is a dingo–origins, hybridisation and identity. Aust. Zool. (2021).

  • 6.

    Jackson, S. M. et al. The dogma of dingoes—taxonomic status of the dingo: a reply to Smith et al. Zootaxa 4564, 198–212 (2019).

    Article 

    Google Scholar 

  • 7.

    Zhang, S.-J. et al. Genomic regions under selection in the feralization of the dingoes. Nat. Commun. 11, 1–10 (2020).

    ADS 

    Google Scholar 

  • 8.

    Corbett, L. The Dingo in Australia and Asia 2nd edn. (JB Books, Marleston, 2011).

    Google Scholar 

  • 9.

    Freedman, A. H. et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 10, e1004016 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 10.

    Savolainen, P., Leitner, T., Wilton, A. N., Matisoo-Smith, E. & Lundeberg, J. A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 101, 12387–12390 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Milham, P. & Thompson, P. Relative antiquity of human occupation and extinct fauna at Madura Cave, southeastern Western Australia. Mankind 10, 175–180 (1976).

    Google Scholar 

  • 12.

    Savolainen, P., Zhang, Y.-P., Luo, J., Lundeberg, J. & Leitner, T. Genetic evidence for an East Asian origin of domestic dogs. Science 298, 1610–1613 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Ardalan, A. et al. Narrow genetic basis for the Australian dingo confirmed through analysis of paternal ancestry. Genetica 140, 65–73 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Wright, J. & Lambert, D. Australia’s first dingo. Australas. Sci. 36, 34–36 (2015).

    Google Scholar 

  • 15.

    Fillios, M. A. & Taçon, P. S. Who let the dogs in? A review of the recent genetic evidence for the introduction of the dingo to Australia and implications for the movement of people. J. Archaeol. Sci. Rep. 7, 782–792 (2016).

    Google Scholar 

  • 16.

    Brown, S. K. et al. Phylogenetic distinctiveness of middle eastern and southeast Asian Village Dog Y chromosomes illuminates dog origins. PLoS ONE 6, e28496. https://doi.org/10.1371/journal.pone.0028496 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Brink, H. et al. Pets and pests: a review of the contrasting economics and fortunes of dingoes and domestic dogs in Australia, and a proposed new funding scheme for non-lethal dingo management. Wildl. Res. 46, 365–377 (2019).

    Article 

    Google Scholar 

  • 18.

    Corbett, L. Canis lupus ssp. dingo. IUCN 2010. IUCN Red List of Threatened Species. Version 2010.4 (2010).

  • 19.

    Burns, G. L. & Howard, P. When wildlife tourism goes wrong: a case study of stakeholder and management issues regarding Dingoes on Fraser Island, Australia. Tourism Manag. 24, 699–712 (2003).

    Article 

    Google Scholar 

  • 20.

    Archer-Lean, C., Wardell-Johnson, A., Conroy, G. & Carter, J. Representations of the dingo: contextualising iconicity. Australas. J. Environ. Manag. 22, 181–196 (2015).

    Article 

    Google Scholar 

  • 21.

    Letnic, M., Koch, F., Gordon, C., Crowther, M. S. & Dickman, C. R. Keystone effects of an alien top-predator stem extinctions of native mammals. Proc. R. Soc. Lond. B: Biol. Sci. 276, 3249–3256 (2009).

    Google Scholar 

  • 22.

    Letnic, M., Crowther, M., Dickman, C. R. & Ritchie, E. G. Demonising the dingo: How much wild dogma is enough?. Curr. Zool. 57, 668–670 (2011).

    Article 

    Google Scholar 

  • 23.

    Letnic, M., Ritchie, E. G. & Dickman, C. R. Top predators as biodiversity regulators: the dingo Canis lupus dingo as a case study. Biol. Rev. 87, 390–413. https://doi.org/10.1111/j.1469-185X.2011.00203.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Colman, N., Gordon, C., Crowther, M. & Letnic, M. Lethal control of an apex predator has unintended cascading effects on forest mammal assemblages. Proc. R. Soc. B: Biol. Sci. 281, 20133094 (2014).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Wallach, A. D., Johnson, C. N., Ritchie, E. G. & O’Neill, A. J. Predator control promotes invasive dominated ecological states. Ecol. Lett. 13, 1008–1018 (2010).

    PubMed 

    Google Scholar 

  • 26.

    Glen, A. S., Dickman, C. R., Soule, M. E. & Mackey, B. Evaluating the role of the dingo as a trophic regulator in Australian ecosystems. Aust. Ecol. 32, 492–501 (2007).

    Article 

    Google Scholar 

  • 27.

    Johnson, C. N., Isaac, J. L. & Fisher, D. O. Rarity of a top predator triggers continent-wide collapse of mammal prey: dingoes and marsupials in Australia. Pro. R. Soc. Lond. B: Biol. Sci. 274, 341–346 (2007).

    Google Scholar 

  • 28.

    Johnson, C. N. & Ritchie, E. G. The dingo and biodiversity conservation: response to Fleming et al. (2012). Aust. Mammal. 35, 8–14 (2013).

    Article 

    Google Scholar 

  • 29.

    Thom, B. & Chappell, J. Vol. 6 90–93 (CONTROL PUBL PTY LTD 14 ARCHERON ST, DONCASTER VIC 3108, AUSTRALIA, 1975).

  • 30.

    Wardell-Johnson, G. et al. Re-framing values for a World Heritage future: what type of icon will K’gari-Fraser Island become?. Australas. J. Environ. Manag. 22, 124–148 (2015).

    Article 

    Google Scholar 

  • 31.

    Corbett, L. Management of Dingoes on Fraser Island (ERA Environmental Services, 1998).

    Google Scholar 

  • 32.

    Appleby, R., Mackie, J., Smith, B., Bernede, L. & Jones, D. Human–dingo interactions on Fraser Island: an analysis of serious incident reports. Aust. Mammal. 40, 146–156 (2018).

    Article 

    Google Scholar 

  • 33.

    Allen, B., Boswell, J. & Higginbottom, K. Fraser Island Dingo Management Strategy Review: Report to Department of Environment and Heritage Protection (Ecosure Pty Ltd, 2012).

    Google Scholar 

  • 34.

    O’Neill, A. J., Cairns, K. M., Kaplan, G. & Healy, E. Managing dingoes on Fraser Island: culling, conflict, and an alternative. Pac. Conserv. Biol. 23, 4–14 (2017).

    Article 

    Google Scholar 

  • 35.

    Conroy, G., Lamont, R., Bridges, L. & Ogbourne, S. (University of the Sunshine Coast, Queensland, Australia, 2016).

  • 36.

    Appleby, R. & Jones, D. Analysis of Preliminary Dingo Capture-Mark-Recapture Experiment on Fraser Island: final Report to Queensland Parks and Wildlife Service (Griffith University, Brisbane, 2011).

    Google Scholar 

  • 37.

    England, P. R., Usher, A. V., Whelan, R. J. & Ayre, D. J. Microsatellite diversity and genetic structure of fragmented populations of the rare, fire-dependent shrub Grevillea macleayana. Mol. Ecol. 11, 967–977 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Frankham, R., Briscoe, D. A. & Ballou, J. D. Introduction to Conservation GENETICS (Cambridge University Press, 2002).

    Book 

    Google Scholar 

  • 39.

    Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).

    Article 

    Google Scholar 

  • 40.

    Lowe, A., Harris, S. & Ashton, P. Ecological Genetics: Design, Analysis, and Application (Wiley, 2009).

    Google Scholar 

  • 41.

    How, R., Spencer, P. & Schmitt, L. Island populations have high conservation value for northern Australia’s top marsupial predator ahead of a threatening process. J. Zool. 278, 206–217 (2009).

    Article 

    Google Scholar 

  • 42.

    Elledge, A. E., Leung, L. K. P., Allen, L. R., Firestone, K. & Wilton, A. N. Assessing the taxonomic status of dingoes (Canis familiaris dingo) for conservation. Mammal Rev. 36, 142–156. https://doi.org/10.1111/j.1365-2907.2006.00086.x (2006).

    Article 

    Google Scholar 

  • 43.

    Oskarsson, M. C. et al. Mitochondrial DNA data indicate an introduction through Mainland Southeast Asia for Australian dingoes and Polynesian domestic dogs. Proc. R. Soc. B: Biol. Sci. rspb20111395 (2011).

  • 44.

    Wilton, A. N. in A Symposium on the Dingo. Royal Zoological Society of New South Wales, Mossman NSW. 49–56.

  • 45.

    Elledge, A. E., Allen, L. R., Carlsson, B., Wilton, A. N. & Leung, L. K. An evaluation of genetic analyses, skull morphology and visual appearance for assessing dingo purity: implications for dingo conservation. Wildl. Res. 35, 812–820. https://doi.org/10.1071/WR07056 (2008).

    Article 

    Google Scholar 

  • 46.

    Stephens, D. The Molecular Ecology of Australian Wild Dogs: Hybridisation, Gene Flow and Genetic Structure at Multiple Geographic Scales. Ph.D. thesis, The University of Western Australia (2011).

  • 47.

    Wilton, A., Steward, D. & Zafiris, K. Microsatellite variation in the Australian dingo. J. Hered. 90, 108–111. https://doi.org/10.1093/jhered/90.1.108 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 48.

    Irion, D. N., Schaffer, A. L., Grant, S., Wilton, A. N. & Pedersen, N. C. Genetic variation analysis of the Bali street dog using microsatellites. BMC Genet. 6, 1 (2005).

    Article 
    CAS 

    Google Scholar 

  • 49.

    Cairns, K. M., Shannon, L. M., Koler-Matznick, J., Ballard, J. W. O. & Boyko, A. R. Elucidating biogeographical patterns in Australian native canids using genome wide SNPs. PLoS ONE 13, e0198754 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Frankel, O. & Soulé, M. E. Conservation and Evolution (CUP Archive, 1981).

    Google Scholar 

  • 51.

    Hamrick, J. L., Godt, M. J. W. & Sherman-Broyles, S. L. Population Genetics of Forest Trees 95–124 (Springer, 1992).

  • 52.

    Falk, D. A., Knapp, E. E. & Guerrant, E. O. An introduction to restoration genetics. Soc. Ecol. Restor. 13, 1–33 (2001).

    Google Scholar 

  • 53.

    Altermatt, F., Pajunen, V. I. & Ebert, D. Climate change affects colonization dynamics in a metacommunity of three Daphnia species. Glob. Change Biol. 14, 1209–1220 (2008).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Cairns, K. Population differentiation in the dingo: biogeography and molecular ecology of the Australian Native Dog using maternal, paternal and autosomal genetic markers. Ph.D. thesis, The University of New South Wales (2014).

  • 55.

    Ding, Z. et al. Origins of domestic dog in Southern East Asia is supported by analysis of Y-chromosome DNA. Heredity 108, 507–514 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Frankham, R. Do island populations have less genetic variation than mainland populations?. Heredity 78, 311–327 (1997).

    PubMed 
    Article 

    Google Scholar 

  • 57.

    Eldridge, M., Kinnear, J., Zenger, K., McKenzie, L. & Spencer, P. Genetic diversity in remnant mainland and “pristine” island populations of three endemic Australian macropodids (Marsupialia): Macropus eugenii, Lagorchestes hirsutus and Petrogale lateralis. Conserv. Genet. 5, 325–338 (2004).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Mills, H. R., Moro, D. & Spencer, P. Conservation significance of island versus mainland populations: a case study of dibblers (Parantechinus apicalis) in Western Australia. Anim. Conserv. 7, 387–395 (2004).

    Article 

    Google Scholar 

  • 59.

    Boessenkool, S., Taylor, S. S., Tepolt, C. K., Komdeur, J. & Jamieson, I. G. Large mainland populations of South Island robins retain greater genetic diversity than offshore island refuges. Conserv. Genet. 8, 705–714 (2007).

    Article 

    Google Scholar 

  • 60.

    Carmichael, L. E. et al. Northwest passages: conservation genetics of Arctic Island wolves. Conserv. Genet. 9, 879–892 (2008).

    Article 

    Google Scholar 

  • 61.

    Cardoso, M. J. et al. Effects of founder events on the genetic variation of translocated island populations: implications for conservation management of the northern quoll. Conserv. Genet. 10, 1719–1733 (2009).

    Article 

    Google Scholar 

  • 62.

    Spencer, P., Sandover, S., Nihill, K., Wale, C. & How, R. Living in isolation: ecological, demographic and genetic patterns in northern Australiaâ s top marsupial predator on Koolan Island. Aust. Mammal. 39, 17–27 (2016).

    Article 

    Google Scholar 

  • 63.

    Allen, B., Higginbottom, K., Bracks, J., Davies, N. & Baxter, G. Balancing dingo conservation with human safety on Fraser Island: the numerical and demographic effects of humane destruction of dingoes. Aust. J. Environ. Manag. 22, 197–215 (2015).

    Article 

    Google Scholar 

  • 64.

    Frankham, R. Inbreeding and extinction: island populations. Conserv. Biol. 12, 665–675 (1998).

    Article 

    Google Scholar 

  • 65.

    Marie, A. D. et al. Implications for management and conservation of the population genetic structure of the wedge clam Donax trunculus across two biogeographic boundaries. Sci. Rep. 6, 39152 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Jamieson, I. G. & Allendorf, F. W. How does the 50/500 rule apply to MVPs?. Trends Ecol. Evol. 27, 578–584 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 67.

    Frankham, R., Bradshaw, C. J. & Brook, B. W. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 170, 56–63 (2014).

    Article 

    Google Scholar 

  • 68.

    Petrie, R. Early Days on Fraser Island 1913–1922 (Go Bush Safaris, 1996).

    Google Scholar 

  • 69.

    Catling, P., Corbett, L. & Newsome, A. Reproduction in captive and wild dingoes (Canis familiaris dingo) in temperate and arid environments of Australia. Wildl. Res. 19, 195–209 (1992).

    Article 

    Google Scholar 

  • 70.

    Thompson, J., Shirreffs, L. & McPhail, I. Dingoes on Fraser Island—tourism dream or management nightmare. Hum. Dimens. Wildl. 8, 37–47 (2003).

    Article 

    Google Scholar 

  • 71.

    Government, Q. (ed.) Department of Environment and Heritage Protection Ecosystem Services (Brisbane, State of Queensland, 2013).

    Google Scholar 

  • 72.

    Ivanova, N. V., Dewaard, J. R. & Hebert, P. D. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes 6, 998–1002 (2006).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Murphy, C. et al. Genetic diversity and structure of the threatened striped legless lizard, Delma impar: management implications for the species and a translocated population. Conserv. Genet. 20, 245–257 (2019).

    MathSciNet 
    Article 

    Google Scholar 

  • 74.

    Lamont, R., Conroy, G., Reddell, P. & Ogbourne, S. Population genetic analysis of a medicinally significant Australian rainforest tree, Fontainea picrosperma CT White (Euphorbiaceae): biogeographic patterns and implications for species domestication and plantation establishment. BMC Plant Biol. 16, 57 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).

    Article 
    CAS 

    Google Scholar 

  • 76.

    Kalinowski, S. T. & Taper, M. L. Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv. Genet. 7, 991–995 (2006).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).

    Article 

    Google Scholar 

  • 78.

    Goudet, J. J. FSTAT version 2.9.3.2., updated from Goudet (1995). FSTAT: a computer program to calculate F-statistics. J. Hered. 86, 485–486 (2002).

    Article 

    Google Scholar 

  • 79.

    Dąbrowski, M., Bornelöv, S., Kruczyk, M., Baltzer, N. & Komorowski, J. ‘True’null allele detection in microsatellite loci: a comparison of methods, assessment of difficulties and survey of possible improvements. Mol. Ecol. Resour. 15, 477–488 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Kalinowski, S. T. HP-Rare: a computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189 (2005).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).

    Article 

    Google Scholar 

  • 82.

    Luikart, G. & Cornuet, J. M. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv. Biol. 12, 228–237 (1998).

    Article 

    Google Scholar 

  • 83.

    Zhang, L. et al. Population structure and genetic differentiation of tea green leafhopper, Empoasca (Matsumurasca) onukii, in China based on microsatellite markers. Sci. Rep. 9, 1202 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 84.

    Do, C. et al. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 85.

    Waples, R. S. Evaluation of a Genetic Method for Estimating Contemporary Population Size in Cetaceans Based on Linkage Disequilibrium (Citeseer, 2006).

    Google Scholar 

  • 86.

    Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Pritchard, J., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genet. Soc. Am. 155, 945–959 (2000).

    CAS 

    Google Scholar 

  • 89.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 90.

    Earl, D. A. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).

    Article 

    Google Scholar 

  • 91.

    Jakobsson, M. & Rosenberg, N. A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).

    CAS 
    Article 

    Google Scholar 

  • 92.

    Rosenberg, N. A. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Invitations to powerful climate action at MIT Better World (Sustainability)

    Climate solutions depend on technology, policy, and businesses working together