Crowther, M. S., Fillios, M., Colman, N. & Letnic, M. An updated description of the Australian dingo (Canis dingo Meyer, 1793). J. Zool. 293(3), 192–203 (2014).
Google Scholar
Smith, B. P. et al. Taxonomic status of the Australian dingo: the case for Canis dingo Meyer, 1793. Zootaxa 4564, 173–197 (2019).
Google Scholar
Sillero-Zubiri, C., Hoffmann, M. & Macdonald, D. W. Canids: foxes, wolves, jackals and dogs: status survey and conservation action plan. (IUCN, 2004).
Jackson, S. M. et al. The wayward dog: is the Australian native dog or dingo a distinct species?. Zootaxa 4317, 201–224 (2017).
Google Scholar
Cairns, K. M. What is a dingo–origins, hybridisation and identity. Aust. Zool. (2021).
Jackson, S. M. et al. The dogma of dingoes—taxonomic status of the dingo: a reply to Smith et al. Zootaxa 4564, 198–212 (2019).
Google Scholar
Zhang, S.-J. et al. Genomic regions under selection in the feralization of the dingoes. Nat. Commun. 11, 1–10 (2020).
Google Scholar
Corbett, L. The Dingo in Australia and Asia 2nd edn. (JB Books, Marleston, 2011).
Freedman, A. H. et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 10, e1004016 (2014).
Google Scholar
Savolainen, P., Leitner, T., Wilton, A. N., Matisoo-Smith, E. & Lundeberg, J. A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 101, 12387–12390 (2004).
Google Scholar
Milham, P. & Thompson, P. Relative antiquity of human occupation and extinct fauna at Madura Cave, southeastern Western Australia. Mankind 10, 175–180 (1976).
Savolainen, P., Zhang, Y.-P., Luo, J., Lundeberg, J. & Leitner, T. Genetic evidence for an East Asian origin of domestic dogs. Science 298, 1610–1613 (2002).
Google Scholar
Ardalan, A. et al. Narrow genetic basis for the Australian dingo confirmed through analysis of paternal ancestry. Genetica 140, 65–73 (2012).
Google Scholar
Wright, J. & Lambert, D. Australia’s first dingo. Australas. Sci. 36, 34–36 (2015).
Fillios, M. A. & Taçon, P. S. Who let the dogs in? A review of the recent genetic evidence for the introduction of the dingo to Australia and implications for the movement of people. J. Archaeol. Sci. Rep. 7, 782–792 (2016).
Brown, S. K. et al. Phylogenetic distinctiveness of middle eastern and southeast Asian Village Dog Y chromosomes illuminates dog origins. PLoS ONE 6, e28496. https://doi.org/10.1371/journal.pone.0028496 (2011).
Google Scholar
Brink, H. et al. Pets and pests: a review of the contrasting economics and fortunes of dingoes and domestic dogs in Australia, and a proposed new funding scheme for non-lethal dingo management. Wildl. Res. 46, 365–377 (2019).
Google Scholar
Corbett, L. Canis lupus ssp. dingo. IUCN 2010. IUCN Red List of Threatened Species. Version 2010.4 (2010).
Burns, G. L. & Howard, P. When wildlife tourism goes wrong: a case study of stakeholder and management issues regarding Dingoes on Fraser Island, Australia. Tourism Manag. 24, 699–712 (2003).
Google Scholar
Archer-Lean, C., Wardell-Johnson, A., Conroy, G. & Carter, J. Representations of the dingo: contextualising iconicity. Australas. J. Environ. Manag. 22, 181–196 (2015).
Google Scholar
Letnic, M., Koch, F., Gordon, C., Crowther, M. S. & Dickman, C. R. Keystone effects of an alien top-predator stem extinctions of native mammals. Proc. R. Soc. Lond. B: Biol. Sci. 276, 3249–3256 (2009).
Letnic, M., Crowther, M., Dickman, C. R. & Ritchie, E. G. Demonising the dingo: How much wild dogma is enough?. Curr. Zool. 57, 668–670 (2011).
Google Scholar
Letnic, M., Ritchie, E. G. & Dickman, C. R. Top predators as biodiversity regulators: the dingo Canis lupus dingo as a case study. Biol. Rev. 87, 390–413. https://doi.org/10.1111/j.1469-185X.2011.00203.x (2012).
Google Scholar
Colman, N., Gordon, C., Crowther, M. & Letnic, M. Lethal control of an apex predator has unintended cascading effects on forest mammal assemblages. Proc. R. Soc. B: Biol. Sci. 281, 20133094 (2014).
Google Scholar
Wallach, A. D., Johnson, C. N., Ritchie, E. G. & O’Neill, A. J. Predator control promotes invasive dominated ecological states. Ecol. Lett. 13, 1008–1018 (2010).
Google Scholar
Glen, A. S., Dickman, C. R., Soule, M. E. & Mackey, B. Evaluating the role of the dingo as a trophic regulator in Australian ecosystems. Aust. Ecol. 32, 492–501 (2007).
Google Scholar
Johnson, C. N., Isaac, J. L. & Fisher, D. O. Rarity of a top predator triggers continent-wide collapse of mammal prey: dingoes and marsupials in Australia. Pro. R. Soc. Lond. B: Biol. Sci. 274, 341–346 (2007).
Johnson, C. N. & Ritchie, E. G. The dingo and biodiversity conservation: response to Fleming et al. (2012). Aust. Mammal. 35, 8–14 (2013).
Google Scholar
Thom, B. & Chappell, J. Vol. 6 90–93 (CONTROL PUBL PTY LTD 14 ARCHERON ST, DONCASTER VIC 3108, AUSTRALIA, 1975).
Wardell-Johnson, G. et al. Re-framing values for a World Heritage future: what type of icon will K’gari-Fraser Island become?. Australas. J. Environ. Manag. 22, 124–148 (2015).
Google Scholar
Corbett, L. Management of Dingoes on Fraser Island (ERA Environmental Services, 1998).
Appleby, R., Mackie, J., Smith, B., Bernede, L. & Jones, D. Human–dingo interactions on Fraser Island: an analysis of serious incident reports. Aust. Mammal. 40, 146–156 (2018).
Google Scholar
Allen, B., Boswell, J. & Higginbottom, K. Fraser Island Dingo Management Strategy Review: Report to Department of Environment and Heritage Protection (Ecosure Pty Ltd, 2012).
O’Neill, A. J., Cairns, K. M., Kaplan, G. & Healy, E. Managing dingoes on Fraser Island: culling, conflict, and an alternative. Pac. Conserv. Biol. 23, 4–14 (2017).
Google Scholar
Conroy, G., Lamont, R., Bridges, L. & Ogbourne, S. (University of the Sunshine Coast, Queensland, Australia, 2016).
Appleby, R. & Jones, D. Analysis of Preliminary Dingo Capture-Mark-Recapture Experiment on Fraser Island: final Report to Queensland Parks and Wildlife Service (Griffith University, Brisbane, 2011).
England, P. R., Usher, A. V., Whelan, R. J. & Ayre, D. J. Microsatellite diversity and genetic structure of fragmented populations of the rare, fire-dependent shrub Grevillea macleayana. Mol. Ecol. 11, 967–977 (2002).
Google Scholar
Frankham, R., Briscoe, D. A. & Ballou, J. D. Introduction to Conservation GENETICS (Cambridge University Press, 2002).
Google Scholar
Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).
Google Scholar
Lowe, A., Harris, S. & Ashton, P. Ecological Genetics: Design, Analysis, and Application (Wiley, 2009).
How, R., Spencer, P. & Schmitt, L. Island populations have high conservation value for northern Australia’s top marsupial predator ahead of a threatening process. J. Zool. 278, 206–217 (2009).
Google Scholar
Elledge, A. E., Leung, L. K. P., Allen, L. R., Firestone, K. & Wilton, A. N. Assessing the taxonomic status of dingoes (Canis familiaris dingo) for conservation. Mammal Rev. 36, 142–156. https://doi.org/10.1111/j.1365-2907.2006.00086.x (2006).
Google Scholar
Oskarsson, M. C. et al. Mitochondrial DNA data indicate an introduction through Mainland Southeast Asia for Australian dingoes and Polynesian domestic dogs. Proc. R. Soc. B: Biol. Sci. rspb20111395 (2011).
Wilton, A. N. in A Symposium on the Dingo. Royal Zoological Society of New South Wales, Mossman NSW. 49–56.
Elledge, A. E., Allen, L. R., Carlsson, B., Wilton, A. N. & Leung, L. K. An evaluation of genetic analyses, skull morphology and visual appearance for assessing dingo purity: implications for dingo conservation. Wildl. Res. 35, 812–820. https://doi.org/10.1071/WR07056 (2008).
Google Scholar
Stephens, D. The Molecular Ecology of Australian Wild Dogs: Hybridisation, Gene Flow and Genetic Structure at Multiple Geographic Scales. Ph.D. thesis, The University of Western Australia (2011).
Wilton, A., Steward, D. & Zafiris, K. Microsatellite variation in the Australian dingo. J. Hered. 90, 108–111. https://doi.org/10.1093/jhered/90.1.108 (1999).
Google Scholar
Irion, D. N., Schaffer, A. L., Grant, S., Wilton, A. N. & Pedersen, N. C. Genetic variation analysis of the Bali street dog using microsatellites. BMC Genet. 6, 1 (2005).
Google Scholar
Cairns, K. M., Shannon, L. M., Koler-Matznick, J., Ballard, J. W. O. & Boyko, A. R. Elucidating biogeographical patterns in Australian native canids using genome wide SNPs. PLoS ONE 13, e0198754 (2018).
Google Scholar
Frankel, O. & Soulé, M. E. Conservation and Evolution (CUP Archive, 1981).
Hamrick, J. L., Godt, M. J. W. & Sherman-Broyles, S. L. Population Genetics of Forest Trees 95–124 (Springer, 1992).
Falk, D. A., Knapp, E. E. & Guerrant, E. O. An introduction to restoration genetics. Soc. Ecol. Restor. 13, 1–33 (2001).
Altermatt, F., Pajunen, V. I. & Ebert, D. Climate change affects colonization dynamics in a metacommunity of three Daphnia species. Glob. Change Biol. 14, 1209–1220 (2008).
Google Scholar
Cairns, K. Population differentiation in the dingo: biogeography and molecular ecology of the Australian Native Dog using maternal, paternal and autosomal genetic markers. Ph.D. thesis, The University of New South Wales (2014).
Ding, Z. et al. Origins of domestic dog in Southern East Asia is supported by analysis of Y-chromosome DNA. Heredity 108, 507–514 (2012).
Google Scholar
Frankham, R. Do island populations have less genetic variation than mainland populations?. Heredity 78, 311–327 (1997).
Google Scholar
Eldridge, M., Kinnear, J., Zenger, K., McKenzie, L. & Spencer, P. Genetic diversity in remnant mainland and “pristine” island populations of three endemic Australian macropodids (Marsupialia): Macropus eugenii, Lagorchestes hirsutus and Petrogale lateralis. Conserv. Genet. 5, 325–338 (2004).
Google Scholar
Mills, H. R., Moro, D. & Spencer, P. Conservation significance of island versus mainland populations: a case study of dibblers (Parantechinus apicalis) in Western Australia. Anim. Conserv. 7, 387–395 (2004).
Google Scholar
Boessenkool, S., Taylor, S. S., Tepolt, C. K., Komdeur, J. & Jamieson, I. G. Large mainland populations of South Island robins retain greater genetic diversity than offshore island refuges. Conserv. Genet. 8, 705–714 (2007).
Google Scholar
Carmichael, L. E. et al. Northwest passages: conservation genetics of Arctic Island wolves. Conserv. Genet. 9, 879–892 (2008).
Google Scholar
Cardoso, M. J. et al. Effects of founder events on the genetic variation of translocated island populations: implications for conservation management of the northern quoll. Conserv. Genet. 10, 1719–1733 (2009).
Google Scholar
Spencer, P., Sandover, S., Nihill, K., Wale, C. & How, R. Living in isolation: ecological, demographic and genetic patterns in northern Australiaâ s top marsupial predator on Koolan Island. Aust. Mammal. 39, 17–27 (2016).
Google Scholar
Allen, B., Higginbottom, K., Bracks, J., Davies, N. & Baxter, G. Balancing dingo conservation with human safety on Fraser Island: the numerical and demographic effects of humane destruction of dingoes. Aust. J. Environ. Manag. 22, 197–215 (2015).
Google Scholar
Frankham, R. Inbreeding and extinction: island populations. Conserv. Biol. 12, 665–675 (1998).
Google Scholar
Marie, A. D. et al. Implications for management and conservation of the population genetic structure of the wedge clam Donax trunculus across two biogeographic boundaries. Sci. Rep. 6, 39152 (2016).
Google Scholar
Jamieson, I. G. & Allendorf, F. W. How does the 50/500 rule apply to MVPs?. Trends Ecol. Evol. 27, 578–584 (2012).
Google Scholar
Frankham, R., Bradshaw, C. J. & Brook, B. W. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 170, 56–63 (2014).
Google Scholar
Petrie, R. Early Days on Fraser Island 1913–1922 (Go Bush Safaris, 1996).
Catling, P., Corbett, L. & Newsome, A. Reproduction in captive and wild dingoes (Canis familiaris dingo) in temperate and arid environments of Australia. Wildl. Res. 19, 195–209 (1992).
Google Scholar
Thompson, J., Shirreffs, L. & McPhail, I. Dingoes on Fraser Island—tourism dream or management nightmare. Hum. Dimens. Wildl. 8, 37–47 (2003).
Google Scholar
Government, Q. (ed.) Department of Environment and Heritage Protection Ecosystem Services (Brisbane, State of Queensland, 2013).
Ivanova, N. V., Dewaard, J. R. & Hebert, P. D. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes 6, 998–1002 (2006).
Google Scholar
Murphy, C. et al. Genetic diversity and structure of the threatened striped legless lizard, Delma impar: management implications for the species and a translocated population. Conserv. Genet. 20, 245–257 (2019).
Google Scholar
Lamont, R., Conroy, G., Reddell, P. & Ogbourne, S. Population genetic analysis of a medicinally significant Australian rainforest tree, Fontainea picrosperma CT White (Euphorbiaceae): biogeographic patterns and implications for species domestication and plantation establishment. BMC Plant Biol. 16, 57 (2016).
Google Scholar
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
Google Scholar
Kalinowski, S. T. & Taper, M. L. Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv. Genet. 7, 991–995 (2006).
Google Scholar
Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).
Google Scholar
Goudet, J. J. FSTAT version 2.9.3.2., updated from Goudet (1995). FSTAT: a computer program to calculate F-statistics. J. Hered. 86, 485–486 (2002).
Google Scholar
Dąbrowski, M., Bornelöv, S., Kruczyk, M., Baltzer, N. & Komorowski, J. ‘True’null allele detection in microsatellite loci: a comparison of methods, assessment of difficulties and survey of possible improvements. Mol. Ecol. Resour. 15, 477–488 (2015).
Google Scholar
Kalinowski, S. T. HP-Rare: a computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189 (2005).
Google Scholar
Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).
Google Scholar
Luikart, G. & Cornuet, J. M. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv. Biol. 12, 228–237 (1998).
Google Scholar
Zhang, L. et al. Population structure and genetic differentiation of tea green leafhopper, Empoasca (Matsumurasca) onukii, in China based on microsatellite markers. Sci. Rep. 9, 1202 (2019).
Google Scholar
Do, C. et al. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).
Google Scholar
Waples, R. S. Evaluation of a Genetic Method for Estimating Contemporary Population Size in Cetaceans Based on Linkage Disequilibrium (Citeseer, 2006).
Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).
Google Scholar
Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).
Google Scholar
Pritchard, J., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genet. Soc. Am. 155, 945–959 (2000).
Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
Google Scholar
Earl, D. A. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
Google Scholar
Jakobsson, M. & Rosenberg, N. A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
Google Scholar
Rosenberg, N. A. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).
Google Scholar
Source: Ecology - nature.com