in

Contribution of conspecific negative density dependence to species diversity is increasing towards low environmental limitation in Japanese forests

  • 1.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article 

    Google Scholar 

  • 2.

    Wright, J. S. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130, 1–14 (2002).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).

    Article 

    Google Scholar 

  • 4.

    Connell, J. On the role of natural enemies in preventing competitive exclusion in some marine animals and rain forest trees. Dyn. Popul. 298, 312 (1971).

    Google Scholar 

  • 5.

    Terborgh, J. W. Toward a trophic theory of species diversity. PNAS 112, 11415–11422 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Johnson, D. J., Beaulieu, W. T., Bever, J. D. & Clay, K. Conspecific negative density dependence and forest diversity. Science 336, 904–907 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    LaManna, J. A. et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science 356, 1389–1392 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Chisholm, R. A. & Muller-Landau, H. C. A theoretical model linking interspecific variation in density dependence to species abundances. Theor. Ecol. 4, 241–253 (2011).

    Article 

    Google Scholar 

  • 9.

    Mangan, S. A. et al. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Chisholm, R. A. & Fung, T. Comment on “Plant diversity increases with the strength of negative density dependence at the global scale”. Science 360, eaar4685 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 11.

    Hülsmann, L. & Hartig, F. Comment on “Plant diversity increases with the strength of negative density dependence at the global scale”. Science 360, eaar2435 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Detto, M., Visser, M. D., Wright, S. J. & Pacala, S. W. Bias in the detection of negative density dependence in plant communities. Ecol. Lett. 22, 1923–1939 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    LaManna, J. A. et al. Response to Comment on “Plant diversity increases with the strength of negative density dependence at the global scale”. Science 360, eaar3824 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 14.

    LaManna, J. A. et al. Response to Comment on “Plant diversity increases with the strength of negative density dependence at the global scale”. Science 360, eaar5245 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 15.

    LaManna, J. A., Mangan, S. A. & Myers, J. A. Conspecific negative density dependence and why its study should not be abandoned. Ecosphere 12, e03322 (2021).

    Article 

    Google Scholar 

  • 16.

    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 18.

    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Article 

    Google Scholar 

  • 19.

    Ricklefs, R. E. & He, F. Region effects influence local tree species diversity. PNAS 113, 674–679 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Comita, L. S. et al. Testing predictions of the Janzen-Connell hypothesis: A meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Currie, D. J. Energy and large-scale patterns of animal- and plant-species richness. Am. Nat. 137, 27–49 (1991).

    Article 

    Google Scholar 

  • 22.

    Grosso, S. D. et al. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89, 2117–2126 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 23.

    Chase, J. M. Stochastic Community Assembly Causes Higher Biodiversity in More Productive Environments. Science 27, (2010).

  • 24.

    O’Brien, E. M. Climatic gradients in woody plant species richness: Towards an explanation based on an analysis of Southern Africa’s woody flora. J. Biogeography 20, 181–198 (1993).

    Article 

    Google Scholar 

  • 25.

    McCain, C. M. & Grytnes, J.-A. Elevational Gradients in Species Richness. In eLS (American Cancer Society, 2010).

  • 26.

    Barry, R. G. Mountain Weather and Climate (Cambridge University Press, 2008).

    Book 

    Google Scholar 

  • 27.

    LaManna, J. A., Walton, M. L., Turner, B. L. & Myers, J. A. Negative density dependence is stronger in resource-rich environments and diversifies communities when stronger for common but not rare species. Ecol. Lett. 19, 657–667 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Zhu, K., Woodall, C. W., Monteiro, J. V. D. & Clark, J. S. Prevalence and strength of density-dependent tree recruitment. Ecology 96, 2319–2327 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 29.

    Yao, J. et al. Abiotic niche partitioning and negative density dependence across multiple life stages in a temperate forest in northeastern China. J. Ecol. 108, 1299–1310 (2020).

    Article 

    Google Scholar 

  • 30.

    Leigh, E. G. et al. Why do some tropical forests have so many species of trees?. Biotropica 36, 447–473 (2004).

    Google Scholar 

  • 31.

    Terborgh, J. Enemies maintain hyperdiverse tropical forests. Am. Nat. 179, 303–314 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Altman, J. et al. Linking spatiotemporal disturbance history with tree regeneration and diversity in an old-growth forest in northern Japan. PPEES 21, 1–13 (2016).

    Google Scholar 

  • 33.

    Kubota, Y., Hirao, T., Fujii, S., Shiono, T. & Kusumoto, B. Beta diversity of woody plants in the Japanese archipelago: The roles of geohistorical and ecological processes. J. Biogeogr. 41, 1267–1276 (2014).

    Article 

    Google Scholar 

  • 34.

    Mori, A. S. Local and biogeographic determinants and stochasticity of tree population demography. J. Ecol. 107, 1276–1287 (2019).

    Article 

    Google Scholar 

  • 35.

    Oohata, S. Distribution of tree species along the temperature gradient in the Japan archipelago (ii).: Life form and species distribution. Jap. J. Ecol. 40, 71–84 (1990).

    ADS 

    Google Scholar 

  • 36.

    Kira, T. A Climatological Interpretation of Japanese Vegetation Zones 21–30 (Springer, 1977).

    Google Scholar 

  • 37.

    Mori, A. S. Environmental controls on the causes and functional consequences of tree species diversity. J. Ecol. 106, 113–125 (2018).

    Article 

    Google Scholar 

  • 38.

    Suzuki, S. N., Ishihara, M. I. & Hidaka, A. Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan. Glob. Chan. Biol. 21, 3436–3444 (2015).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Hara, M. Analysis of seedling banks of a climax beech forest: Ecological importance of seedling sprouts. Vegetatio 71, 67–74 (1987).

    Google Scholar 

  • 40.

    Homma, K. Effects of snow pressure on growth form and life history of tree species in Japanese beech forest. J. Veg. Sci. 8, 781–788 (1997).

    Article 

    Google Scholar 

  • 41.

    Gansert, D. Treelines of the Japanese Alps—altitudinal distribution and species composition under contrasting winter climates. Flora 199, 143–156 (2004).

    Article 

    Google Scholar 

  • 42.

    Hukusima, T. et al. New phytosociological classification of beech forests in Japan. Jpn. J. Ecol. 45, 79–98 (1995).

    Google Scholar 

  • 43.

    Matsui, T. et al. Probability distributions, vulnerability and sensitivity in Fagus crenata forests following predicted climate changes in Japan. J. Veg. Sci. 15, 605–614 (2004).

    Article 

    Google Scholar 

  • 44.

    Johnson, D. J., Condit, R., Hubbell, S. P. & Comita, L. S. Abiotic niche partitioning and negative density dependence drive tree seedling survival in a tropical forest. Proc. R. Soc. B 284, 20172210 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Ishihara, M. I. et al. Forest stand structure, composition, and dynamics in 34 sites over Japan. Ecol. Res. 26, 1007–1008 (2011).

    Article 

    Google Scholar 

  • 46.

    Law, R. et al. Ecological information from spatial patterns of plants: Insights from point process theory. J. Ecol. 97, 616–628 (2009).

    Article 

    Google Scholar 

  • 47.

    Wright, S. J. et al. Reproductive size thresholds in tropical trees: Variation among individuals, species and forests. J. Trop. Ecol. 21, 307–315 (2005).

    Article 

    Google Scholar 

  • 48.

    Zhu, Y., Comita, L. S., Hubbell, S. P. & Ma, K. Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. J. Ecol. 103, 957–966 (2015).

    Article 

    Google Scholar 

  • 49.

    Ripley, B. D. Spatial point pattern analysis in ecology. In Develoments in Numerical Ecology (eds Legendre, P. & Legendre, L.) 407–429 (Springer, 1987).

    Chapter 

    Google Scholar 

  • 50.

    Wiegand, T. & Moloney, K. A. Handbook of Spatial Point-Pattern Analysis in Ecology (CRC Press, 2013).

    Book 

    Google Scholar 

  • 51.

    Loosmore, N. B. & Ford, E. D. Statistical inference using the G or K point pattern spatial statistics. Ecology 87, 1925–1931 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 52.

    R Core Team. R: A Language and Environment for Statistical Computing (2020).

  • 53.

    Baddeley, A. & Turner, R. spatstat: An R Package for Analyzing Spatial Point Patterns. J. Stat. Soft. 12, 1–42 (2005).

    Article 

    Google Scholar 

  • 54.

    Wills, C., Condit, R., Foster, R. B. & Hubbell, S. P. Strong density- and diversity-related effects help to maintain tree species diversity in a neotropical forest. PNAS 94, 1252–1257 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Givnish, T. J. On the causes of gradients in tropical tree diversity. J. Ecol. 87, 193–210 (1999).

    Article 

    Google Scholar 

  • 56.

    Fibich, P., Vítová, A. & Lepš, J. Interaction between habitat limitation and dispersal limitation is modulated by species life history and external conditions: A stochastic matrix model approach. Comm. Ecol. 19, 9–20 (2018).

    Article 

    Google Scholar 

  • 57.

    Miyawaki, A. A vegetation ecological view of the Japanese archipelago. Bull. Inst. Environ. Sci. Technol. Yokohama Natl. Univ. 11, 85–101 (1984).

    Google Scholar 

  • 58.

    Mori, A. S. et al. Community assembly processes shape an altitudinal gradient of forest biodiversity. Glo. Ecol. Biogeogr. 22, 878–888 (2013).

    Article 

    Google Scholar 

  • 59.

    Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties (Wiley, 2001).

    Google Scholar 

  • 60.

    Brown, C., Law, R., Illian, J. B. & Burslem, D. F. R. P. Linking ecological processes with spatial and non-spatial patterns in plant communities. J. Ecol. 99, 1402–1414 (2011).

    Article 

    Google Scholar 

  • 61.

    Bastias, C. C. et al. Species richness influences the spatial distribution of trees in European forests. Oikos 129, 380–390 (2020).

    Article 

    Google Scholar 

  • 62.

    Hülsmann, L., Chisholm, R. A. & Hartig, F. Is variation in conspecific negative density dependence driving tree diversity patterns at large scales?. Trends Ecol. Evol. 36, 151–163 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 63.

    Damgaard, C. & Weiner, J. It’s about time: A critique of macroecological inferences concerning plant competition. Trends Ecol. Evol. 32, 86–87 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 64.

    Murata, I. et al. Effects of sika deer (Cervus nippon) and dwarf bamboo (Sasamorpha borealis) on seedling emergence and survival in cool-temperate mixed forests in the Kyushu Mountains. J. For. Res. 14, 296–301 (2009).

    Article 

    Google Scholar 

  • 65.

    Ackerly, D. D. et al. The geography of climate change: Implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Crossing disciplines, adding fresh eyes to nuclear engineering

    Predicting building emissions across the US