in

Cross-scale interaction of host tree size and climatic water deficit governs bark beetle-induced tree mortality

  • 1.

    USDAFS. Press Release: Survey Finds 18 Million Trees Died in California in 2018. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/FSEPRD609321.pdf (USDAFS, 2019).

  • 2.

    Griffin, D. & Anchukaitis, K. J. How unusual is the 2012-2014 California drought? Geophys. Res. Lett. 41, 9017–9023 (2014).

    ADS  Article  Google Scholar 

  • 3.

    Robeson, S. M. Revisiting the recent California drought as an extreme value. Geophys. Res. Lett. 42, 6771–6779 (2015).

    ADS  Article  Google Scholar 

  • 4.

    Asner, G. P. et al. Progressive forest canopy water loss during the 2012-2015 California drought. Proc. Natl Acad. Sci. USA 113, E249–E255 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Brodrick, P. G. & Asner, G. P. Remotely sensed predictors of conifer tree mortality during severe drought. Environ. Res. Lett. 12, 115013 (2017).

    ADS  Article  Google Scholar 

  • 6.

    Fettig, C. J. in Managing Sierra Nevada Forests. PSW-GTR-237 Ch. 2 (USDA Forest Service, 2012).

  • 7.

    Kolb, T. E. et al. Observed and anticipated impacts of drought on forest insects and diseases in the United States. For. Ecol. Manag. 380, 321–334 (2016).

    Article  Google Scholar 

  • 8.

    Waring, R. H. & Pitman, G. B. Modifying lodgepole pine stands to change susceptibility to mountain pine beetle attack. Ecology 66, 889–897 (1985).

    Article  Google Scholar 

  • 9.

    Restaino, C. et al. Forest structure and climate mediate drought-induced tree mortality in forests of the Sierra Nevada, USA. Ecol. Appl. 0, e01902 (2019).

    Article  Google Scholar 

  • 10.

    USDAFS. Press Release: Record 129 million dead trees in California. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd566303.pdf (USDAFS, 2017).

  • 11.

    Young, D. J. N. et al. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecol. Lett. 20, 78–86 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Raffa, K. F. et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. BioScience 58, 501–517 (2008).

    Article  Google Scholar 

  • 13.

    Boone, C. K., Aukema, B. H., Bohlmann, J., Carroll, A. L. & Raffa, K. F. Efficacy of tree defense physiology varies with bark beetle population density: a basis for positive feedback in eruptive species. Can. J. Res. 41, 1174–1188 (2011).

    Article  Google Scholar 

  • 14.

    Fettig, C. J., Mortenson, L. A., Bulaon, B. M. & Foulk, P. B. Tree mortality following drought in the central and southern Sierra Nevada, California, U.S. For. Ecol. Manag. 432, 164–178 (2019).

    Article  Google Scholar 

  • 15.

    Stephenson, N. L., Das, A. J., Ampersee, N. J. & Bulaon, B. M. Which trees die during drought? The key role of insect host-tree selection. J. Ecol. 75, 2383–2401 (2019).

    Article  Google Scholar 

  • 16.

    Senf, C., Campbell, E. M., Pflugmacher, D., Wulder, M. A. & Hostert, P. A multi-scale analysis of western spruce budworm outbreak dynamics. Landsc. Ecol. 32, 501–514 (2017).

    Article  Google Scholar 

  • 17.

    Seidl, R. et al. Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle. J. Appl Ecol. 53, 530–540 (2016).

    Article  Google Scholar 

  • 18.

    Fettig, C. J. in Insects and Diseases of Mediterranean Forest Systems (eds Lieutier, F. & Paine, T. D.) 499–528 (Springer International Publishing, 2016).

  • 19.

    Raffa, K. F. & Berryman, A. A. The role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae). Ecol. Monogr. 53, 27–49 (1983).

    Article  Google Scholar 

  • 20.

    Logan, J. A., White, P., Bentz, B. J. & Powell, J. A. Model analysis of spatial patterns in mountain pine beetle outbreaks. Theor. Popul. Biol. 53, 236–255 (1998).

    CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

  • 21.

    Wallin, K. F. & Raffa, K. F. Feedback between individual host selection behavior and population dynamics in an eruptive herbivore. Ecol. Monogr. 74, 101–116 (2004).

    Article  Google Scholar 

  • 22.

    Franceschi, V. R., Krokene, P., Christiansen, E. & Krekling, T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. N. Phytol. 167, 353–376 (2005).

    CAS  Article  Google Scholar 

  • 23.

    Raffa, K. F., Grégoire, J.-C. & Staffan Lindgren, B. Natural History and Ecology of Bark Beetles 1–40 (Elsevier, 2015).

  • 24.

    Bentz, B. J. et al. Climate change and bark beetles of the western United States and Canada: direct and indirect effects. BioScience 60, 602–613 (2010).

    Article  Google Scholar 

  • 25.

    DeRose, R. J. & Long, J. N. Drought-driven disturbance history characterizes a southern Rocky Mountain subalpine forest. Can. J. Res. 42, 1649–1660 (2012).

    Article  Google Scholar 

  • 26.

    Hart, S. J., Veblen, T. T., Schneider, D. & Molotch, N. P. Summer and winter drought drive the initiation and spread of spruce beetle outbreak. Ecology 98, 2698–2707 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Netherer, S., Panassiti, B., Pennerstorfer, J. & Matthews, B. Acute drought Is an important driver of bark beetle infestation in Austrian Norway spruce stands. Front. For. Glob. Change 2, 39 (2019).

  • 28.

    Kaiser, K. E., McGlynn, B. L. & Emanuel, R. E. Ecohydrology of an outbreak: mountain pine beetle impacts trees in drier landscape positions first. Ecohydrology 6, 444–454 (2013).

    Article  Google Scholar 

  • 29.

    Marini, L. et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 40, 1426–1435 (2017).

    Article  Google Scholar 

  • 30.

    Sambaraju, K. R., Carroll, A. L. & Aukema, B. H. Multiyear weather anomalies associated with range shifts by the mountain pine beetle preceding large epidemics. For. Ecol. Manag. 438, 86–95 (2019).

    Article  Google Scholar 

  • 31.

    Hayes, C. J., Fettig, C. J. & Merrill, L. D. Evaluation of multiple funnel traps and stand characteristics for estimating western pine beetle-caused tree mortality. J. Econ. Entomol. 102, 2170–2182 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Thistle, H. W. et al. Surrogate pheromone plumes in three forest trunk spaces: composite statistics and case studies. For. Sci. 50, 610–625 (2004).

  • 33.

    Miller, J. M. & Keen, F. P. Biology and Control of the Western Pine Beetle: A Summary of The First Fifty Years of Research (US Department of Agriculture, 1960).

  • 34.

    Chubaty, A. M., Roitberg, B. D. & Li, C. A dynamic host selection model for mountain pine beetle, Dendroctonus ponderosae Hopkins. Ecol. Model. 220, 1241–1250 (2009).

    Article  Google Scholar 

  • 35.

    Graf, M., Reid, M. L., Aukema, B. H. & Lindgren, B. S. Association of tree diameter with body size and lipid content of mountain pine beetles. Can. Entomol. 144, 467–477 (2012).

    Article  Google Scholar 

  • 36.

    Geiszler, D. R. & Gara, R. I. in Theory and Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests: Symposium Proceedings (eds Berryman, A. A., Amman, G. D. & Stark, R. W.) (1978).

  • 37.

    Klein, W. H., Parker, D. L. & Jensen, C. E. Attack, emergence, and stand depletion trends of the mountain pine beetle in a lodgepole pine stand during an outbreak. Environ. Entomol. 7, 732–737 (1978).

    Article  Google Scholar 

  • 38.

    Mitchell, R. G. & Preisler, H. K. Analysis of spatial patterns of lodgepole pine attacked by outbreak populations of the mountain pine beetle. For. Sci. 37, 1390–1408 (1991).

    Google Scholar 

  • 39.

    Preisler, H. K. Modelling spatial patterns of trees attacked by bark-beetles. Appl. Stat. 42, 501 (1993).

    MATH  Article  Google Scholar 

  • 40.

    Jactel, H. & Brockerhoff, E. G. Tree diversity reduces herbivory by forest insects. Ecol. Lett. 10, 835–848 (2007).

    PubMed  Article  Google Scholar 

  • 41.

    Faccoli, M. & Bernardinelli, I. Composition and elevation of spruce forests affect susceptibility to bark beetle attacks: implications for forest management. Forests 5, 88–102 (2014).

    Article  Google Scholar 

  • 42.

    Berryman, A. A. in Bark Beetles in North American Conifers: A System for the Study of Evolutionary Biology 264–314 (University of Texas Press, 1982).

  • 43.

    Fettig, C. J. et al. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. For. Ecol. Manag. 238, 24–53 (2007).

    Article  Google Scholar 

  • 44.

    Moeck, H. A., Wood, D. L. & Lindahl, K. Q. Host selection behavior of bark beetles (Coleoptera: Scolytidae) attacking Pinus ponderosa, with special emphasis on the western pine beetle, Dendroctonus brevicomis. J. Chem. Ecol. 7, 49–83 (1981).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Evenden, M. L., Whitehouse, C. M. & Sykes, J. Factors influencing flight capacity of the mountain pine beetle (Coleoptera: Curculionidae: Scolytinae). Environ. Entomol. 43, 187–196 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 46.

    Raffa, K. F. & Berryman, A. A. Accumulation of monoterpenes and associated volatiles following inoculation of grand fir with a fungus transmitted by the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae). Can. Entomol. 114, 797–810 (1982).

    CAS  Article  Google Scholar 

  • 47.

    Anderegg, W. R. L. et al. Tree mortality from drought, insects, and their interactions in a changing climate. N. Phytol. 208, 674–683 (2015).

    Article  Google Scholar 

  • 48.

    Kane, V. R. et al. Assessing fire effects on forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park. Remote Sens. Environ. 151, 89–101 (2014).

    ADS  Article  Google Scholar 

  • 49.

    Larson, A. J. & Churchill, D. Tree spatial patterns in fire-frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatments. For. Ecol. Manag. 267, 74–92 (2012).

    Article  Google Scholar 

  • 50.

    Morris, J. L. et al. Managing bark beetle impacts on ecosystems and society: Priority questions to motivate future research. J. Appl. Ecol. 54, 750–760 (2017).

    Article  Google Scholar 

  • 51.

    Shiklomanov, A. N. et al. Enhancing global change experiments through integration of remote-sensing techniques. Front. Ecol. Environ. 17, 215–224 (2019).

  • 52.

    Jeronimo, S. M. A. et al. Forest structure and pattern vary by climate and landform across active-fire landscapes in the montane Sierra Nevada. For. Ecol. Manag. 437, 70–86 (2019).

    Article  Google Scholar 

  • 53.

    Roussel, J.-R., Auty, D., De Boissieu, F. & Meador, A. S. lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications (2019).

  • 54.

    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N. Phytol. 178, 719–739 (2008).

    Article  Google Scholar 

  • 55.

    Seybold, S. J. et al. Management of western North American bark beetles with semiochemicals. Annu. Rev. Entomol. 63, 407–432 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Fettig, C. J., McKelvey, S. R. & Huber, D. P. W. Nonhost angiosperm volatiles and verbenone disrupt response of western pine beetle, Dendroctonus brevicomis (Coleoptera: Scolytidae), to attractant-baited traps. J. Econ. Entomol. 98, 2041–2048 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Fettig, C. J., Dabney, C. P., McKelvey, S. R. & Huber, D. P. W. Nonhost angiosperm volatiles and verbenone protect individual ponderosa pines from attack by western pine beetle and red turpentine beetle (Coleoptera: Curculionidae, Scolytinae). West J. Appl. 23, 40–45 (2008).

    Google Scholar 

  • 58.

    Fettig, C. J. et al. Efficacy of ‘Verbenone Plus’ for protecting ponderosa pine trees and stands from Dendroctonus brevicomis (Coleoptera: Curculionidae) attack in British Columbia and California. J. Econ. Entomol. 105, 1668–1680 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Oliver, W. W. Is self-thinning in ponderosa pine ruled by Dendroctonus bark beetles? In Forest Health Through Silviculture: Proceedings of the 1995 National Silviculture Workshop 6 (1995).

  • 60.

    Fettig, C. & McKelvey, S. Resiliency of an interior ponderosa pine forest to bark beetle infestations following fuel-reduction and forest-restoration treatments. Forests 5, 153–176 (2014).

    Article  Google Scholar 

  • 61.

    Fettig, C. J. & Hilszczański, J. Bark Beetles 555–584. https://doi.org/10.1016/B978-0-12-417156-5.00014-9 (Elsevier, 2015).

  • 62.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  • 63.

    Fricker, G. A. et al. More than climate? Predictors of tree canopy height vary with scale in complex terrain, Sierra Nevada, CA (USA). For. Ecol. Manag. 434, 142–153 (2019).

    Article  Google Scholar 

  • 64.

    Ma, S., Concilio, A., Oakley, B., North, M. & Chen, J. Spatial variability in microclimate in a mixed-conifer forest before and after thinning and burning treatments. For. Ecol. Manag. 259, 904–915 (2010).

    Article  Google Scholar 

  • 65.

    Stovall, A. E. L., Shugart, H. & Yang, X. Tree height explains mortality risk during an intense drought. Nat. Commun. 10, 1–6 (2019).

    Article  CAS  Google Scholar 

  • 66.

    Stephenson, N. L. & Das, A. J. Height-related changes in forest composition explain increasing tree mortality with height during an extreme drought. Nat. Commun. 11, 3402 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Stovall, A. E. L., Shugart, H. H. & Yang, X. Reply to ‘Height-related changes in forest composition explain increasing tree mortality with height during an extreme drought’. Nat. Commun. 11, 3401 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Person, H. L. Tree selection by the western pine beetle. J. For. 26, 564–578 (1928).

    Google Scholar 

  • 69.

    Person, H. L. Theory in explanation of the selection of certain trees by the western pine beetle. J. For. 29, 696–699 (1931).

    CAS  Google Scholar 

  • 70.

    Pile, L. S., Meyer, M. D., Rojas, R., Roe, O. & Smith, M. T. Drought impacts and compounding mortality on forest trees in the southern Sierra Nevada. Forests 10, 237 (2019).

    Article  Google Scholar 

  • 71.

    Frey, J., Kovach, K., Stemmler, S. & Koch, B. UAV photogrammetry of forests as a vulnerable process. A sensitivity analysis for a structure from motion RGB-image pipeline. Remote Sens. 10, 912 (2018).

    ADS  Article  Google Scholar 

  • 72.

    James, M. R. & Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf. 39, 1413–1420 (2014).

    ADS  Article  Google Scholar 

  • 73.

    Gray, P. C. et al. A convolutional neural network for detecting sea turtles in drone imagery. Methods Ecol. Evol. 10, 345–355 (2019).

    Article  Google Scholar 

  • 74.

    Millar, C. I., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 75.

    Vose, J. M. et al. in Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment Vol II (eds Reidmiller, D. R., et al.) 232–267. https://nca2018.globalchange.gov/chapter/6/https://doi.org/10.7930/NCA4.2018.CH6 (2018).

  • 76.

    Bedard, W. D. et al. Western pine beetle: field response to its sex pheromone and a synergistic host terpene, myrcene. Science 164, 1284–1285 (1969).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 77.

    Byers, J. A. & Wood, D. L. Interspecific inhibition of the response of the bark beetles, Dendroctonus brevicomis and Ips paraconfusus, to their pheromones in the field. J. Chem. Ecol. 6, 149–164 (1980).

    CAS  Article  Google Scholar 

  • 78.

    Shepherd, W. P., Huber, D. P. W., Seybold, S. J. & Fettig, C. J. Antennal responses of the western pine beetle, Dendroctonus brevicomis (Coleoptera: Curculionidae), to stem volatiles of its primary host, Pinus ponderosa, and nine sympatric nonhost angiosperms and conifers. Chemoecology 17, 209–221 (2007).

    CAS  Article  Google Scholar 

  • 79.

    DJI. Zenmuse X3 – Creativity Unleashed. DJI Official https://www.dji.com/zenmuse-x3/info (2015).

  • 80.

    Micasense. MicaSense. https://support.micasense.com/hc/en-us/articles/215261448-RedEdge-User-Manual-PDF-Download- (2015).

  • 81.

    DJI. DJI – The World Leader in Camera Drones/Quadcopters for Aerial Photography. DJI Official https://www.dji.com/matrice100/info (2015).

  • 82.

    Wyngaard, J. et al. Emergent challenges for science sUAS data management: fairness through community engagement and best practices development. Remote Sens. 11, 1797 (2019).

    ADS  Article  Google Scholar 

  • 83.

    Rouse, W., Haas, R. H., Deering, W. & Schell, J. A. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation (Remote Sensing Center, Texas A&M Univ., 1973).

  • 84.

    DronesMadeEasy. Map Pilot for DJI on iOS. App Store https://itunes.apple.com/us/app/map-pilot-for-dji/id1014765000?mt=8 (2018).

  • 85.

    Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).

  • 86.

    Zhang, W. et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens. 8, 501 (2016).

    ADS  Article  Google Scholar 

  • 87.

    Hijmans, R. J. et al. Raster: Geographic Data Analysis and Modeling (2019).

  • 88.

    Gitelson, A. & Merzlyak, M. N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 143, 286–292 (1994).

    CAS  Article  Google Scholar 

  • 89.

    Coops, N. C., Johnson, M., Wulder, M. A. & White, J. C. Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation. Remote Sens. Environ. 103, 67–80 (2006).

    ADS  Article  Google Scholar 

  • 90.

    Clevers, J. G. P. W. & Gitelson, A. A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Observ. Geoinf. 23, 344–351 (2013).

    ADS  Article  Google Scholar 

  • 91.

    Li, W., Guo, Q., Jakubowski, M. K. & Kelly, M. A new method for segmenting individual trees from the LiDAR point cloud. Photogramm. Eng. Remote Sens. 78, 75–84 (2012).

    Article  Google Scholar 

  • 92.

    Jakubowski, M. K., Li, W., Guo, Q. & Kelly, M. Delineating individual trees from LiDAR data: a comparison of vector- and raster-based segmentation approaches. Remote Sens. 5, 4163–4186 (2013).

    ADS  Article  Google Scholar 

  • 93.

    Shin, P., Sankey, T., Moore, M. & Thode, A. Evaluating unmanned aerial vehicle images for estimating forest canopy fuels in a ponderosa pine stand. Remote Sens. 10, 1266 (2018).

    ADS  Article  Google Scholar 

  • 94.

    Roussel, J.-R. lidRplugins: Extra Functions and Algorithms for lidR Package (2019).

  • 95.

    Eysn, L. et al. A benchmark of LiDAR-based single tree detection methods using heterogeneous forest data from the alpine space. Forests 6, 1721–1747 (2015).

    Article  Google Scholar 

  • 96.

    Vega, C. et al. PTrees: a point-based approach to forest tree extraction from LiDAR data. Int. J. Appl. Earth Observ. Geoinf. 33, 98–108 (2014).

    ADS  Article  Google Scholar 

  • 97.

    Plowright, A. ForestTools: Analyzing Remotely Sensed Forest Data (2018).

  • 98.

    Pau, G., Fuchs, F., Sklyar, O., Boutros, M. & Huber, W. EBImage: An R package for image processing with applications to cellular phenotypes. Bioinformatics 26, 979–981 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 99.

    Meyer, F. & Beucher, S. Morphological segmentation. J. Vis. Commun. Image Represent. 1, 21–46 (1990).

    Article  Google Scholar 

  • 100.

    Hunziker, P. Velox: Fast Raster Manipulation and Extraction (2017).

  • 101.

    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article  Google Scholar 

  • 102.

    Wang, Y. et al. Is field-measured tree height as reliable as believed – a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest. ISPRS J. Photogramm. Remote Sens. 147, 132–145 (2019).

    ADS  Article  Google Scholar 

  • 103.

    Weinstein, B. G., Marconi, S., Bohlman, S., Zare, A. & White, E. Individual tree-crown detection in RGB imagery using semi-supervised deep learning neural networks. Remote Sens. 11, 1309 (2019).

    ADS  Article  Google Scholar 

  • 104.

    dos Santos, A. A. et al. Assessment of CNN-based methods for individual tree detection on images captured by RGB cameras attached to UAVs. Sensors (Basel) 19, 3595 (2019).

  • 105.

    Stephenson, N. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. J. Biogeogr. 25, 855–870 (1998).

    Article  Google Scholar 

  • 106.

    Flint, L. E., Flint, A. L., Thorne, J. H. & Boynton, R. Fine-scale hydrologic modeling for regional landscape applications: The California Basin Characterization Model development and performance. Ecol. Process. 2, 25 (2013).

    Article  Google Scholar 

  • 107.

    Millar, C. I. et al. Forest mortality in high-elevation whitebark pine (Pinus albicaulis) forests of eastern California, USA: influence of environmental context, bark beetles, climatic water deficit, and warming. Can. J. For. Res. 42, 749–765 (2012).

    Article  Google Scholar 

  • 108.

    Baldwin, B. G. et al. Species richness and endemism in the native flora of California. Am. J. Bot. 104, 487–501 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 109.

    Bürkner, P.-C. brms: an R package for bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article  Google Scholar 

  • 110.

    Hoffman, M. D. & Gelman, A. The no-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 31 (2014).

    MathSciNet  MATH  Google Scholar 

  • 111.

    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).

    Article  Google Scholar 

  • 112.

    Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434 (1998).

    MathSciNet  Google Scholar 

  • 113.

    Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. Ser. A 182, 389–402 (2019).

    MathSciNet  Article  Google Scholar 

  • 114.

    Koontz, M. J., Latimer, A. M., Mortenson, L. A., Fettig, C. J. & North, M. P. Drone-derived data supporting “Cross-scale interaction of host tree size and climatic water deficit governs bark beetle-induced tree mortality”. https://doi.org/10.17605/OSF.IO/3CWF9 (2020).

  • 115.

    Baldwin, B. G. et al. Master spatial file for native California vascular plants used by Baldwin et al. (2017 Amer. J. Bot.), Dryad, Dataset, 2017. https://doi.org/10.6078/D16K5W.

  • 116.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • 117.

    Koontz, M. J., Latimer, A. M., Mortenson, L. A., Fettig, C. J. & North, M. P. Local-structure-wpb-severity. https://doi.org/10.17605/OSF.IO/WPK5Z (2019).


  • Source: Ecology - nature.com

    Rock magnetism uncrumples the Himalayas’ complex collision zone

    Scientists discover slimy microbes that may help keep coral reefs healthy