in

Depth-dependent parental effects create invisible barriers to coral dispersal

  • 1.

    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Article  Google Scholar 

  • 2.

    Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Knowlton, N. Sibling species in the sea. Annu. Rev. Ecol. Syst. 24, 189–216 (1993).

    Article  Google Scholar 

  • 4.

    Palumbi, S. R. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Syst. 25, 547–572 (1994).

    Article  Google Scholar 

  • 5.

    Carlon, D. B. & Budd, A. F. Incipient speciation across a depth gradient in a scleractinian coral? Evolution 56, 2227–2242 (2002).

    PubMed  Article  Google Scholar 

  • 6.

    Rocha, L. A., Robertson, D. R., Roman, J. & Bowen, B. W. Ecological speciation in tropical reef fishes. Proc. Biol. Sci. 272, 573–579 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Thornhill, D. J., Mahon, A. R., Norenburg, J. L. & Halanych, K. M. Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol. Ecol. 17, 5104–5117 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Ingram, T. Speciation along a depth gradient in a marine adaptive radiation. Proc. Biol. Sci. 278, 613–618 (2011).

    PubMed  Google Scholar 

  • 10.

    Prada, C. & Hellberg, M. E. Long prereproductive selection and divergence by depth in a Caribbean candelabrum coral. Proc. Natl Acad. Sci. USA 110, 3961–3966 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Muir, P. R., Wallace, C. C., Done, T. & Aguirre, J. D. Limited scope for latitudinal extension of reef corals. Science 348, 1135–1138 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Kenkel, C. D., Setta, S. P. & Matz, M. V. Heritable differences in fitness-related traits among populations of the mustard hill coral, Porites astreoides. Heredity 115, 509–516 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Brown, B., Dunne, R., Goodson, M. & Douglas, A. Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs 21, 119–126 (2002).

    Article  Google Scholar 

  • 14.

    Thompson, D. M. & van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. Biol. Sci. 276, 2893–2901 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Howells, E. J., Berkelmans, R., van Oppen, M. J. H., Willis, B. L. & Bay, L. K. Historical thermal regimes define limits to coral acclimatization. Ecology 94, 1078–1088 (2013).

    PubMed  Article  Google Scholar 

  • 16.

    Fine, M., Gildor, H. & Genin, A. A coral reef refuge in the Red Sea. Glob. Chang. Biol. 19, 3640–3647 (2013).

    PubMed  Article  Google Scholar 

  • 17.

    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Dixon, G. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Smith, T. B. et al. Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob. Chang. Biol. 22, 2756–2765 (2016).

    PubMed  Article  Google Scholar 

  • 20.

    Kenkel, C. D. & Matz, M. V. Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat. Ecol. Evol. 1, 0014 (2017).

    Article  Google Scholar 

  • 21.

    Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 22.

    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Mousseau, T. A. & Fox, C. W. The adaptive significance of maternal effects. Trends Ecol. Evol. 13, 403–407 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Badyaev, A. V. & Uller, T. Parental effects in ecology and evolution: mechanisms, processes and implications. Philos. Trans. R. Soc. B Biol. Sci. 364, 1169–1177 (2009).

    Article  Google Scholar 

  • 25.

    Marshall, D. J., Allen, R. M. & Crean, A. J. The ecological and evolutionary importance of maternal effects in the sea. Oceanogr. Mar. Biol. 46, 203–250 (2008).

    Google Scholar 

  • 26.

    Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Change 7, 627–636 (2017).

    Article  Google Scholar 

  • 27.

    Padilla-Gamiño, J. L., Pochon, X., Bird, C., Concepcion, G. T. & Gates, R. D. From parent to gamete: vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef building coral Montipora capitata. PLoS One 7, e38440 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 28.

    Quigley, K. M., Willis, B. L. & Bay, L. K. Maternal effects and Symbiodinium community composition drive differential patterns in juvenile survival in the coral Acropora tenuis. R. Soc. Open Sci. 3, 160471 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Goodbody-Gringley, G., Wong, K. H., Becker, D. M., Glennon, K. & de Putron, S. J. Reproductive ecology and early life history traits of the brooding coral, Porites astreoides, from shallow to mesophotic zones. Coral Reefs 37, 483–494 (2018).

    Article  Google Scholar 

  • 30.

    Bellworthy, J., Spangenberg, J. E. & Fine, M. Feeding increases the number of offspring but decreases parental investment of Red Sea coral Stylophora pistillata. Ecol. Evol. 9, 12245–12258 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Putnam, H. M., Ritson-Williams, R., Cruz, J. A., Davidson, J. M. & Gates, R. D. Environmentally-induced parental or developmental conditioning influences coral offspring ecological performance. Sci. Rep. 10, 13664 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Gleason, D. F. & Wellington, G. M. Variation in UVB sensitivity of planula larvae of the coral Agaricia agaricites along a depth gradient. Mar. Biol. 123, 693–703 (1995).

    Article  Google Scholar 

  • 33.

    Mundy, C. N. & Babcock, R. C. Role of light intensity and spectral quality in coral settlement: implications for depth-dependent settlement? J. Exp. Mar. Bio. Ecol. 223, 235–255 (1998).

    Article  Google Scholar 

  • 34.

    Wellington, G. M. & Fitt, W. K. Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Mar. Biol. 143, 1185–1192 (2003).

    CAS  Article  Google Scholar 

  • 35.

    Baird, A. H., Babcock, R. C. & Mundy, C. P. Habitat selection by larvae influences the depth distribution of six common coral species. Mar. Ecol. Prog. Ser. 252, 289–293 (2003).

    Article  Google Scholar 

  • 36.

    Fogarty, N. D. Caribbean acroporid coral hybrids are viable across life history stages. Mar. Ecol. Prog. Ser. 446, 145–159 (2012).

    Article  Google Scholar 

  • 37.

    Strader, M. E., Davies, S. W. & Matz, M. V. Differential responses of coral larvae to the colour of ambient light guide them to suitable settlement microhabitat. R. Soc. Open Sci. 2, 150358 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 38.

    Rundle, H. D. & Nosil, P. Ecological speciation. Ecol. Lett. 8, 336–352 (2005).

    Article  Google Scholar 

  • 39.

    DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Hendry, A. P. Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation. Evol. Ecol. Res. 6, 1219–1236 (2004).

    Google Scholar 

  • 41.

    Nosil, P., Vines, T. H. & Funk, D. J. Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59, 705–719 (2005).

    PubMed  Google Scholar 

  • 42.

    Eytan, R. I., Hayes, M., Arbour-Reily, P., Miller, M. & Hellberg, M. E. Nuclear sequences reveal mid‐range isolation of an imperilled deep‐water coral population. Mol. Ecol. 18, 2375–2389 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Brazeau, D. A., Lesser, M. P. & Slattery, M. Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within mesophotic reefs. PLoS One 8, e65845 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    van Oppen, M. J. H. et al. Adaptation to reef habitats through selection on the coral animal and its associated microbiome. Mol. Ecol. 27, 2956–2971 (2018).

    PubMed  Article  CAS  Google Scholar 

  • 45.

    Drury, C., Pérez Portela, R., Serrano, X. M., Oleksiak, M. & Baker, A. C. Fine‐scale structure among mesophotic populations of the great star coral Montastraea cavernosa revealed by SNP genotyping. Ecol. Evol. 10, 6009–6019 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    van Oppen, M. J. H., Bongaerts, P., Underwoord, J. N., Peplow, L. M. & Cooper, T. F. The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia. Mol. Ecol. 20, 1647–1660 (2011).

    PubMed  Article  Google Scholar 

  • 47.

    Serrano, X. M. et al. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol. Ecol. 23, 4226–4240 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Serrano, X. M. et al. Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci. Rep. 6, 21619 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Bongaerts, P. et al. Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci. Adv. 3, e1602373 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Eckert, R. J., Studivan, M. S. & Voss, J. D. Populations of the coral species Montastraea cavernosa on the Belize Barrier Reef lack vertical connectivity. Sci. Rep. 9, 7200 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 51.

    Riegl, B. & Piller, W. E. Possible refugia for reefs in times of environmental stress. Int. J. Earth Sci. 92, 520–531 (2003).

    Article  Google Scholar 

  • 52.

    Bongaerts, P. & Smith, T. B. Beyond the “Deep Reef Refuge” hypothesis: a conceptual framework to characterize persistence at depth. In Mesophotic Coral Ecosystems, Vol. 12 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) Ch. 45 (Springer, 2019).

  • 53.

    Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).

    Article  Google Scholar 

  • 54.

    van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).

    Article  Google Scholar 

  • 55.

    Sinniger, F., Morita, M. & Harii, S. ‘Locally extinct’ coral species Seriatopora hystrix found at upper mesophotic depths in Okinawa. Coral Reefs 32, 153 (2013).

    Article  Google Scholar 

  • 56.

    Prasetia, R., Sinniger, F., Hashizume, K. & Harii, S. Reproductive biology of the deep brooding coral Seriatopora hystrix: Implications for shallow reef recovery. PLoS One 12, e0177034 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 57.

    Richmond, R. H. Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar. Biol. 93, 527–533 (1987).

    Article  Google Scholar 

  • 58.

    Graham, E. M., Baird, A. H. & Connolly, S. R. Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27, 529–539 (2008).

    Article  Google Scholar 

  • 59.

    Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed? Science 287, 857–859 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 60.

    Thompson, D. M. et al. Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity? Prog. Oceanogr. 165, 110–122 (2018).

    Article  Google Scholar 

  • 61.

    Kahng, S. E. et al. Light, Temperature, photosynthesis, heterotrophy, and the lower depth limits of mesophotic coral ecosystems. In Mesophotic Coral Ecosystems, Vol. 12 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) Ch. 42 (Springer, 2019).

  • 62.

    Shlesinger, T., Grinblat, M., Rapuano, H., Amit, T. & Loya, Y. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99, 421–437 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Dishon, G., Dubinsky, Z., Fine, M. & Iluz, D. Underwater light field patterns in subtropical coastal waters: a case study from the Gulf of Eilat (Aqaba). Isr. J. Plant Sci. 60, 265–275 (2012).

    Article  Google Scholar 

  • 64.

    Shlesinger, T. & Loya, Y. Recruitment, mortality, and resilience potential of scleractinian corals at Eilat, Red Sea. Coral Reefs 35, 1357–1368 (2016).

    Article  Google Scholar 

  • 65.

    Shlesinger, T. & Loya, Y. Sexual reproduction of scleractinian corals in mesophotic coral ecosystems vs. shallow reefs. In Mesophotic Coral Ecosystems, Vol. 12 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) Ch. 35 (Springer, 2019).

  • 66.

    Bridge, T. C. L., Hughes, T. P., Guinotte, J. M. & Bongaerts, P. Call to protect all coral reefs. Nat. Clim. Change 3, 528–530 (2013).

    Article  Google Scholar 

  • 67.

    Soares, M. O. et al. Why do mesophotic coral ecosystems have to be protected? Sci. Total Environ. 726, 138456 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Pyle, R. L. & Copus, J. M. Mesophotic coral ecosystems: Introduction and overview. In Mesophotic Coral Ecosystems, Vol. 12 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) Ch. 1 (Springer, 2019).

  • 69.

    Holstein, D. M., Smith, T. B., Gyory, J. & Paris, C. B. Fertile fathoms: deep reproductive refugia for threatened shallow corals. Sci. Rep. 5, 12407 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Ritson-Williams, R. et al. New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson. Contrib. Mar. Sci. 38, 437–457 (2009).

  • 71.

    Webster, N. S. et al. Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl. Environ. Microbiol. 70, 1213–1221 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    Whitman, T. N., Negri, A. P., Bourne, D. G. & Randall, C. J. Settlement of larvae from four families of corals in response to a crustose coralline alga and its biochemical morphogens. Sci. Rep. 10, 16397 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 73.

    Doropoulos, C. et al. Depth gradients drive changes in early successional community composition and associated coral larvae settlement interactions. Mar. Biol. 167, 59 (2020).

    Article  Google Scholar 

  • 74.

    Sammarco, P. W. & Andrews, J. C. Localized dispersal and recruitment in Great Barrier Reef corals: the Helix experiment. Science 239, 1422–1424 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 75.

    Vollmer, S. V. & Palumbi, S. R. Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: implications for the recovery of endangered reefs. J. Hered. 98, 40–50 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    Figueiredo, J., Baird, A. H. & Connolly, S. R. Synthesizing larval competence dynamics and reef‐scale retention reveals a high potential for self‐recruitment in corals. Ecology 94, 650–659 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 77.

    Underwood, J. N. et al. Extreme seascape drives local recruitment and genetic divergence in brooding and spawning corals in remote north‐west Australia. Evol. Appl. 13, 2404–2421 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 78.

    Dubé, C. E., Boissin, E., Mercière, A. & Planes, S. Parentage analyses identify local dispersal events and sibling aggregations in a natural population of Millepora hydrocorals, a free‐spawning marine invertebrate. Mol. Ecol. 29, 1508–1522 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 79.

    Liberman, R., Shlesinger, T., Loya, Y. & Benayahu, Y. Octocoral sexual reproduction: temporal disparity between mesophotic and shallow-reef populations. Front. Mar. Sci. 5, 445 (2018).

    Article  Google Scholar 

  • 80.

    Feldman, B., Shlesinger, T. & Loya, Y. Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea. Coral Reefs 37, 201–214 (2018).

    Article  Google Scholar 

  • 81.

    Carlon, D. B. & Olson, R. R. Larval dispersal distance as an explanation for adult spatial pattern in two Caribbean reef corals. J. Exp. Mar. Bio. Ecol. 173, 247–263 (1993).

    Article  Google Scholar 

  • 82.

    Miller, K. & Mundy, C. Rapid settlement in broadcast spawning corals: implications for larval dispersal. Coral Reefs 22, 99–106 (2003).

    Article  Google Scholar 

  • 83.

    Cooper, T. F. et al. Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proc. Biol. Sci. 278, 1840–1850 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 84.

    Pochon, X. et al. Depth specialization in mesophotic corals (Leptoseris spp.) and associated algal symbionts in Hawai’i. R. Soc. Open Sci. 2, 140351 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 85.

    Baird, A. H., Guest, J. R. & Willis, B. L. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu. Rev. Ecol. Evol. Syst. 40, 551–571 (2009).

    Article  Google Scholar 

  • 86.

    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).

    Article  Google Scholar 

  • 87.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 88.

    Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: a silent threat to coral persistence. Science 365, 1002–1007 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 89.

    Doebeli, M. & Dieckmann, U. Speciation along environmental gradients. Nature 421, 259–264 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 90.

    Schluter, D. Evidence for ecological speciation and its alternative. Science 323, 737–741 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 91.

    Goreau, T. F. The ecology of Jamaican coral reefs I. Species composition and zonation. Ecology 40, 67–90 (1959).

    Article  Google Scholar 

  • 92.

    Loya, Y. Community structure and species diversity of hermatypic corals at Eilat, Red Sea. Mar. Biol. 13, 100–123 (1972).

    Article  Google Scholar 

  • 93.

    Sheppard, C. R. C. Coral populations on reef slopes and their major controls. Mar. Ecol. Prog. Ser. 7, 83–115 (1982).

    Article  Google Scholar 

  • 94.

    Vermeij, M. J. A. & Bak, R. P. M. Species-specific population structure of closely related coral morphospecies along a depth gradient (5-60 m) over a Caribbean reef slope. Bull. Mar. Sci. 73, 725–744 (2003).

    Google Scholar 

  • 95.

    Rocha, L. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 96.

    Tamir, R., Eyal, G., Kramer, N., Laverick, J. H. & Loya, Y. Light environment drives the shallow‐to‐mesophotic coral community transition. Ecosphere 10, e02839 (2019).

    Article  Google Scholar 

  • 97.

    Roberts, T. E., Bridge, T. C. L., Caley, M. J., Madin, J. S. & Baird, A. H. Resolving the depth zonation paradox in reef‐building corals. Ecology 100, e02761 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 98.

    Benayahu, Y. & Loya, Y. Surface brooding in the Red Sea soft coral Parerythropodium fulvum fulvum (Forskål, 1775). Biol. Bull. 165, 353–369 (1983).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 99.

    Shefy, D., Shashar, N. & Rinkevich, B. The reproduction of the Red Sea coral Stylophora pistillata from Eilat: 4-decade perspective. Mar. Biol. 165, 27 (2018).

    Article  Google Scholar 

  • 100.

    Rosenberg, Y., Doniger, T. & Levy, O. Sustainability of coral reefs are affected by ecological light pollution in the Gulf of Aqaba/Eilat. Commun. Biol. 2, 289 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 101.

    Eyal, G. et al. Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35, 91–102 (2016).

    Article  Google Scholar 

  • 102.

    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2020).


  • Source: Ecology - nature.com

    Predator-induced defence in a dinoflagellate generates benefits without direct costs

    Movement behavior of a solitary large carnivore within a hotspot of human-wildlife conflicts in India