in

Diapause vs. reproductive programs: transcriptional phenotypes in a keystone copepod

  • 1.

    Record, N. R. et al. Copepod diapause and the biogeography of the marine lipidscape. J. Biogeogr. 45, 2238–2251 (2018).

    Article 

    Google Scholar 

  • 2.

    Conover, R. J. & Corner, E. D. S. Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles. J. Mar. Biol. Assoc. UK 48, 49–75 (1968).

    Article 

    Google Scholar 

  • 3.

    Kattner, G. et al. Perspectives on marine zooplankton lipids. Can. J. Fish. Aquat. Sci. 64, 1628–1639 (2007).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Beaugrand, G., Brander, K. M., Lindley, J. A., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Coyle, K. et al. Climate change in the southeastern Bering Sea: impacts on pollock stocks and implications for the oscillating control hypothesis. Fish. Oceanogr. 20, 139–156 (2011).

    Article 

    Google Scholar 

  • 6.

    Liu, H., Bi, H. & Peterson, W. T. Large-scale forcing of environmental conditions on subarctic copepods in the northern California Current system. Prog. Oceanogr. 134, 404–412 (2015).

    Article 

    Google Scholar 

  • 7.

    Peterson, W. T. et al. The pelagic ecosystem in the Northern California Current off Oregon during the 2014–2016 warm anomalies within the context of the past 20 years. J. Geophys. Res. Oceans 122, 7267–7290 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Bi, H., Peterson, W. T., Lamb, J. & Casillas, E. Copepods and salmon: characterizing the spatial distribution of juvenile salmon along the Washington and Oregon coast, USA. Fish. Oceanogr. 20, 125–138 (2011).

    Article 

    Google Scholar 

  • 9.

    Kirby, R. R. & Beaugrand, G. Trophic amplification of climate warming. Proc. R. Soc. B 276, 4095–4103 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Hirche, H.-J. Temperature and plankton II. Effect on respiration and swimming activity in copepods from the Greenland Sea. Mar. Biol. 94, 347–356 (1987).

    Article 

    Google Scholar 

  • 11.

    Mahara, N., Pakhomov, E. A., Jackson, J. M. & Hunt, B. P. Seasonal zooplankton development in a temperate semi-enclosed basin: two years with different spring bloom timing. J. Plankton Res. 41, 309–328 (2019).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Hooff, R. C. & Peterson, W. T. Copepod biodiversity as an indicator of changes in ocean and climate conditions of the northern California current ecosystem. Limnol. Oceanogr. 51, 2607–2620 (2006).

    Article 

    Google Scholar 

  • 13.

    Keister, J. E., Di Lorenzo, E., Morgan, C., Combes, V. & Peterson, W. Zooplankton species composition is linked to ocean transport in the Northern California Current. Glob. Change Biol. 17, 2498–2511 (2011).

    Article 

    Google Scholar 

  • 14.

    Johnson, C. L. et al. Characteristics of Calanus finmarchicus dormancy patterns in the Northwest Atlantic. ICES J. Mar. Sci. 65, 339–350 (2008).

    Article 

    Google Scholar 

  • 15.

    Ji, R. B., Edwards, M., Mackas, D. L., Runge, J. A. & Thomas, A. C. Marine plankton phenology and life history in a changing climate: current research and future directions. J. Plankton Res. 32, 1355–1368 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Weydmann, A., Walczowski, W., Carstensen, J. & Kwaśniewski, S. Warming of Subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus. Glob. Change Biol. 24, 172–183 (2018).

    Article 

    Google Scholar 

  • 17.

    Niehoff, B., Madsen, S., Hansen, B. & Nielsen, T. Reproductive cycles of three dominant Calanus species in Disko Bay, West Greenland. Mar. Biol. 140, 567–576 (2002).

    Article 

    Google Scholar 

  • 18.

    Meise, C. J. & O’Reilly, J. E. Spatial and seasonal patterns in abundance and age-composition of Calanus finmarchicus in the Gulf of Maine and on Georges Bank: 1977–1987. Deep-Sea Res. II 43, 1473–1501 (1996).

    Article 

    Google Scholar 

  • 19.

    Fiksen, Ø. The adaptive timing of diapause–a search for evolutionarily robust strategies in Calanus finmarchicus. ICES J. Mar. Sci. 57, 1825–1833 (2000).

    Article 

    Google Scholar 

  • 20.

    Miller, C. B., Crain, J. A. & Morgan, C. A. Oil storage variability in Calanus finmarchicus. ICES J. Mar. Sci. 57, 1786–1799 (2000).

    Article 

    Google Scholar 

  • 21.

    Miller, C. B., Cowles, T. J., Wiebe, P. H., Copley, N. J. & Grigg, H. Phenology in Calanus finmarchicus – Hypotheses about control mechanisms. Mar. Ecol. Prog. Ser. 72, 79–91 (1991).

    Article 

    Google Scholar 

  • 22.

    Speirs, D. C. et al. Ocean-scale modelling of the distribution, abundance, and seasonal dynamics of the copepod Calanus finmarchicus. Mar. Ecol. Prog. Ser. 313, 173–192 (2006).

    Article 

    Google Scholar 

  • 23.

    Tarrant, A. M. et al. Transcriptional profiling of metabolic transitions during development and diapause preparation in the copepod Calanus finmarchicus. Integr. Comp. Biol. 56, 1157–1169 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Baumgartner, M. F. & Tarrant, A. M. The physiology and ecology of diapause in marine copepods. Annu. Rev. Mar. Sci. 9, 387–411 (2017).

    Article 

    Google Scholar 

  • 25.

    Wilson, R. J., Banas, N. S., Heath, M. R. & Speirs, D. C. Projected impacts of 21st century climate change on diapause in Calanus finmarchicus. Glob. Change Biol. 22, 3332–3340 (2016).

    Article 

    Google Scholar 

  • 26.

    Jónasdóttir, S. H., Visser, A. W., Richardson, K. & Heath, M. R. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proc. Natl Acad. Sci. USA. 112, 12122–12126 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Jónasdóttir, S. H., Wilson, R. J., Gislason, A. & Heath, M. R. Lipid content in overwintering Calanus finmarchicus across the Subpolar Eastern North Atlantic Ocean. Limnol. Oceanogr. 64, 2029–2043 (2019).

    Article 
    CAS 

    Google Scholar 

  • 28.

    Varpe, Ø. Fitness and phenology: annual routines and zooplankton adaptations to seasonal cycles. J. Plankton Res. 34, 267–276 (2012).

    Article 

    Google Scholar 

  • 29.

    Denlinger, D. L., Yocum, G. D. & Rinehart, J. P. in Insect Endocrinology (ed Gilbert, L. I.) 430–463 (Academic Press, 2012).

  • 30.

    Hirche, H. J. Diapause in the marine copepod, Calanus finmarchicus – a review. Ophelia 44, 129–143 (1996).

    Article 

    Google Scholar 

  • 31.

    Häfker, N. S. et al. Calanus finmarchicus seasonal cycle and diapause in relation to gene expression, physiology, and endogenous clocks. Limnol. Oceanogr. 63, 2815–2838 (2018).

    Article 

    Google Scholar 

  • 32.

    Roncalli, V. et al. Physiological characterization of the emergence from diapause: a transcriptomics approach. Sci. Rep. 8, 12577 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Roncalli, V., Cieslak, M. C., Hopcroft, R. R. & Lenz, P. H. Capital breeding in a diapausing copepod: a transcriptomics analysis. Front. Mar. Sci. 7, 56 (2020).

    Article 

    Google Scholar 

  • 34.

    MacRae, T. H. Gene expression, metabolic regulation and stress tolerance during diapause. Cell. Mol. Life Sci. 67, 2405–2424 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Poelchau, M. F., Reynolds, J. A., Elsik, C. G., Denlinger, D. L. & Armbruster, P. A. Deep sequencing reveals complex mechanisms of diapause preparation in the invasive mosquito, Aedes albopictus. Proc. R. Soc. B 280 (2013).

  • 36.

    Ragland, G. J. & Keep, E. Comparative transcriptomics support evolutionary convergence of diapause responses across Insecta. Physiol. Entomol. 42, 246–256 (2017).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Koštál, V. Eco-physiological phases of insect diapause. J. Insect Physiol. 52, 113–127 (2006).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 38.

    Tarrant, A. M. et al. Transcriptional profiling of reproductive development, lipid storage and molting throughout the last juvenile stage of the marine copepod Calanus finmarchicus. Front. Zool. 11, 1 (2014).

    Article 
    CAS 

    Google Scholar 

  • 39.

    Jensen, L. K. et al. A multi-generation Calanus finmarchicus culturing system for use in long-term oil exposure experiments. J. Exp. Mar. Biol. Ecol. 333, 71–78 (2006).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Cieslak, M. C., Castelfranco, A. M., Roncalli, V., Lenz, P. H. & Hartline, D. K. t-Distributed Stochastic Neighbor Embedding (t-SNE): a tool for eco-physiological transcriptomic analysis. Mar. Genomics 51, 100723 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 41.

    van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  • 42.

    Roncalli, V., Cieslak, M. C., Germano, M., Hopcroft, R. R. & Lenz, P. H. Regional heterogeneity impacts gene expression in the sub-arctic zooplankter Neocalanus flemingeri in the northern Gulf of Alaska. Commun. Biol. 2, 1–13 (2019).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Johnson, K. M., Wong, J. M., Hoshijima, U., Sugano, C. S. & Hofmann, G. E. Seasonal transcriptomes of the Antarctic pteropod Limacina helicina antarctica. Mar. Env. Res. 143, 49–59 (2019).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Denlinger, D. L. Regulation of diapause. Annu. Rev. Entomol. 47, 93–122 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Denlinger, D. L. & Armbruster, P. A. Mosquito diapause. Annu. Rev. Entomol. 59, 73–93 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Hahn, D. A. & Denlinger, D. L. Energetics of insect diapause. Annu. Rev. Entomol. 56, 103–121 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Sim, C. & Denlinger, D. L. Transcription profiling and regulation of fat metabolism genes in diapausing adults of the mosquito Culex pipiens. Physiol. Genomics 39, 202–209 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Sim, C. & Denlinger, D. L. Insulin signaling and the regulation of insect diapause. Front. Physiol. 4, 189 (2013).

  • 49.

    Andrews, T. S. & Hemberg, M. Identifying cell populations with scRNASeq. Mol. Asp. Med. 59, 114–122 (2018).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Habib, N. et al. Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353, 925–928 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Arrese, E. L. & Soulages, J. L. Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Hahn, D. A. & Denlinger, D. L. Meeting the energetic demands of insect diapause: nutrient storage and utilization. J. Insect Physiol. 53, 760–773 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Lee, R. F., Hagen, W. & Kattner, G. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 307, 273–306 (2006).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Kattner, G. & Hagen, W. Polar herbivorous copepods–different pathways in lipid biosynthesis. ICES J. Mar. Sci. 52, 329–335 (1995).

    Article 

    Google Scholar 

  • 55.

    Miller, C. B., Morgan, C. A., Prahl, F. G. & Sparrow, M. A. Storage lipids of the copepod Calanus finmarchicus from Georges Bank and the Gulf of Maine. Limnol. Oceanogr. 43, 488–497 (1998).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Hirche, H. J. & Niehoff, B. Reproduction of the Arctic copepod Calanus hyperboreus in the Greenland Sea-field and laboratory observations. Pol. Biol. 16, 209–219 (1996).

    Article 

    Google Scholar 

  • 57.

    Niehoff, B. & Hirche, H.-J. Oogenesis and gonad maturation in the copepod Calanus finmarchicus and the prediction of egg production from preserved samples. Pol. Biol. 16, 601–612 (1996).

    Article 

    Google Scholar 

  • 58.

    Koštál, V., Štětina, T., Poupardin, R., Korbelová, J. & Bruce, A. W. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc. Natl Acad. Sci. USA. 114, 8532–8537 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 59.

    Aruda, A. M., Baumgartner, M. F., Reitzel, A. M. & Tarrant, A. M. Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus. J. Insect Physiol. 57, 665–675 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Unal, E., Bucklin, A., Lenz, P. H. & Towle, D. W. Gene expression of the marine copepod Calanus finmarchicus: responses to small-scale environmental variation in the Gulf of Maine (NW Atlantic Ocean). J. Exp. Mar. Biol. Ecol. 446, 76–85 (2013).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Ning, J., Wang, M. X., Li, C. L. & Sun, S. Transcriptome sequencing and de novo analysis of the copepod Calanus sinicus using 454 GS FLX. PLoS ONE 8, e63741 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Zhang, Q., Lu, Y.-X. & Xu, W.-H. Proteomic and metabolomic profiles of larval hemolymph associated with diapause in the cotton bollworm, Helicoverpa armigera. BMC Genomics 14, 751 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Hansen, M. et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet. 4, e24 (2008).

  • 64.

    Qiu, Z. & MacRae, T. H. ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana. Biochem. J. 411, 605–611 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Lu, M.-X. et al. Diapause, signal and molecular characteristics of overwintering Chilo suppressalis (Insecta: Lepidoptera: Pyralidae). Sci. Rep. 3, 1–9 (2013).

    CAS 

    Google Scholar 

  • 66.

    Forreryd, A., Johansson, H., Albrekt, A.-S. & Lindstedt, M. Evaluation of high throughput gene expression platforms using a genomic biomarker signature for prediction of skin sensitization. BMC Genomics 15, 379 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 67.

    Lenz, P. H. et al. De novo assembly of a transcriptome for Calanus finmarchicus (Crustacea, Copepoda)–the dominant zooplankter of the North Atlantic Ocean. PLoS ONE 9, e88589 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Roncalli, V., Cieslak, M. C. & Lenz, P. H. Transcriptomic responses of the calanoid copepod Calanus finmarchicus to the saxitoxin producing dinoflagellate Alexandrium fundyense. Sci. Rep. 6, 25708 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Roncalli, V., Cieslak, M. C. & Lenz, P. H. Data from: Transcriptomic responses of the calanoid copepod Calanus finmarchicus to the saxitoxin producing dinoflagellate Alexandrium fundyense. Dryad, Dataset (2016).

  • 70.

    Choquet, M. et al. Genetics redraws pelagic biogeography of Calanus. Biol. Lett. 13, 20170588 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Choquet, M. et al. Can morphology reliably distinguish between the copepods Calanus finmarchicus and C. glacialis, or is DNA the only way? Limnol. Oceanogr.: Methods 16, 237–252 (2018).

    Article 

    Google Scholar 

  • 72.

    Skottene, E. et al. A crude awakening: effects of crude oil on lipid metabolism in calanoid copepods terminating diapause. Biol. Bull. 237, 90–110 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Melle, W. & Skjoldal, H. R. Reproduction and development of Calanus finmarchicus, C. glacialis and C. hyperboreus in the Barents Sea. Mar. Ecol. Prog. Ser. 169, 211–228 (1998).

    Article 

    Google Scholar 

  • 74.

    Weydmann, A. et al. Mitochondrial genomes of the key zooplankton copepods Arctic Calanus glacialis and North Atlantic Calanus finmarchicus with the longest crustacean non-coding regions. Sci. Rep. 7, 1–11 (2017).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Lenz, P. H., Lieberman, B., Cieslak, M. C., Roncalli, V. & Hartline, D. K. Transcriptomics and metatranscriptomics in zooplankton: wave of the future? J. Plankton Res. 43, 3–9 (2021).

    Article 

    Google Scholar 

  • 76.

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. https://doi.org/10.1186/Gb-2009-10-3-R25 (2009).

  • 77.

    Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 78.

    van der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014).

    Google Scholar 

  • 79.

    Krijthe, J. H. Rtsne: t-Distributed Stochastic Neighbor Embedding using a Barnes-Hut implementation, version 0.13. (2015).

  • 80.

    Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. Second International Conference on Knowledge Discovery and Data Mining (KDD-96) 96, 226–231 (1996).

  • 81.

    Dunn, J. C. Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4, 95–104 (1974).

    Article 

    Google Scholar 

  • 82.

    Hahsler, M. & Piekenbrock, M. Dbscan: density based clustering of applications with noise (DBSCAN) and related algorithms. R. package version 1, 1–3 (2018).

    Google Scholar 

  • 83.

    Desgraupes, B. ClusterCrit: Clustering Indices. R package version 1.2.8. (2018).

  • 84.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 85.

    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 559 (2008).

    Article 
    CAS 

    Google Scholar 

  • 86.

    Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. 4, 17 (2005).

  • 87.

    Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for gene ontology. R. package version 2, 2010 (2010).

    Google Scholar 

  • 89.

    Galili, T., O’Callaghan, A., Sidi, J. & Sievert, C. heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 34, 1600–1602 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 90.

    Lenz, P. H. et al. Diapause vs. reproductive programs: transcriptional phenotypes in Calanus finmarchicus. Dryad, Dataset, https://doi.org/10.5061/dryad.12jm63xw7 (2021).


  • Source: Ecology - nature.com

    Cooling homes without warming the planet

    Powering the energy transition with better storage