Orians, G. H. & Pearson, N. E. On the theory of central place foraging. Analysis of ecological systems. In Analysis of ecological systems Vol. 2 (eds Horn D. J., Mitchell R. D. & Stairs G. R.) 155–177 (Ohio State Univ. Press, 1979).
Biuw, M. et al. Variations in behavior and condition of a Southern Ocean top predator in relation to in situ oceanographic conditions. Proc. Natl. Acad. Sci. 104, 13705–13710 (2007).
Google Scholar
Arcalís-Planas, A. et al. Limited use of sea ice by the Ross seal (Ommatophoca rossii), in Amundsen Sea, Antarctica, using telemetry and remote sensing data. Polar Biol. 38, 445–461 (2015).
Google Scholar
Staniland, I. J., Boyd, I. L. & Reid, K. An energy–distance trade-off in a central-place forager, the Antarctic fur seal (Arctocephalus gazella). Mar. Biol. 152, 233–241 (2007).
Google Scholar
Le Boeuf, B. et al. Foraging ecology of northern elephant seals. Ecol. Monogr. 70, 353–382 (2000).
Google Scholar
Adelung, D., Kierspel, M. A., Liebsch, N., Müller, G. & Wilson, R. P. Distribution of harbour seals in the German bight in relation to offshore wind power plants. In Offshore Wind Energy: Research on Environmental Impacts (eds Köller, J., Köppel J. & Peters, W.) 65–75 (Springer, 2006).
Thompson, P. M., Mackay, A., Tollit, D. J., Enderby, S. & Hammond, P. S. The influence of body size and sex on the characteristics of harbour seal foraging trips. Can. J. Zool. 76, 1044–1053 (1998).
Google Scholar
Wilson, R. P. et al. Options for modulating intra-specific competition in colonial pinnipeds : the case of harbour seals (Phoca vitulina) in the Wadden Sea. PeerJ 4, e957 (2015).
Google Scholar
Sharples, R. J., Moss, S. E., Patterson, T. A. & Hammond, P. S. Spatial variation in foraging behaviour of a marine top predator (Phoca vitulina) determined by a large-scale satellite tagging program. PLoS ONE 7, e37216 (2012).
Google Scholar
Liebsch, N., Wilson, R. P. & Adelung, D. Utilisation of time and space by harbour seals (Phoca vitulina vitulina) determined by new remote-sensing methods. In Progress in Marine Conservation in Europe (eds von Nordheim, H., Boedeker, D. & Krause, J.C.) 179–188 (Springer, 2006).
Tougaard, J., Teilmann, J. & Tougaard, S. Harbour seal spatial distribution estimated from Argos satellite telemetry: overcoming positioning errors. Endanger. Species Res. 4, 113–122 (2008).
Google Scholar
Common Wadden Sea Secretariat. Report on the State of Conservation of the World Heritage property “ The Wadden Sea ( N1314 )” (2016).
Brasseur, S. M. J. M. et al. Echoes from the past: regional variations in recovery within a harbour seal population. PLoS ONE 13, 1–21 (2018).
Google Scholar
Wolff, W. J. Ecology of the Wadden Sea (Balkema, 1983).
Baumann, H., Malzahn, A. M., Voss, R. & Temming, A. The German Bight (North Sea) is a nursery area for both locally and externally produced sprat juveniles. J. Sea Res. 61, 234–243 (2009).
Google Scholar
Tulp, I., Bolle, L. J. & Rijnsdorp, A. D. Signals from the shallows: in search of common patterns in long-term trends in Dutch estuarine and coastal fish. J. Sea Res. 60, 54–73 (2008).
Google Scholar
Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).
Google Scholar
Birt, V., Birt, T., Goulet, D., Cairns, D. & Montevecchi, W. Ashmole’s halo: direct evidence for prey depletion by a seabird. Mar. Ecol. Prog. Ser. 40, 205–208 (1987).
Google Scholar
Russell, D. J. F. et al. Intrinsic and extrinsic drivers of activity budgets in sympatric grey and harbour seals. Oikos 124, 1462–1472 (2015).
Google Scholar
Sparling, C. E., Fedak, M. A. & Thompson, D. Eat now, pay later? Evidence of deferred food-processing costs in diving seals. Biol. Lett. 3, 94–98 (2007).
Google Scholar
Ramasco, V., Biuw, M. & Nilssen, K. T. Improving time budget estimates through the behavioural interpretation of dive bouts in harbour seals. Anim. Behav. 94, 117–134 (2014).
Google Scholar
Mikkelsen, L. et al. Long-term sound and movement recording tags to study natural behavior and reaction to ship noise of seals. Ecol. Evol. 9(5), 2588–2601 (2019).
Google Scholar
Carter, M. I. D., Bennett, K. A., Embling, C. B., Hosegood, P. J. & Russell, D. J. F. Navigating uncertain waters: a critical review of inferring foraging behaviour from location and dive data in pinnipeds. Mov. Ecol. 4, 1–20 (2016).
Google Scholar
Boyd, I. L. Temporal scales of foraging in a marine predator author. Ecology 77, 426–434 (1996).
Google Scholar
Bjorge, A. et al. Habitat Use and Diving Behaviour of Harbour Seals in a Coastal Archipelage in Norway 211–223 (Elsevier, 1995).
Lesage, V., Hammill, M. O. & Kovacs, K. M. Functional classification of harbor seal (Phoca vitulina) dives using depth profiles, swimming velocity, and an index of foraging success. Can. J. Zool. 77, 74–87 (1999).
Google Scholar
Baechler, J., Beck, C. A. & Bowen, W. Dive shapes reveal temporal changes in the foraging behaviour of different age and sex classes of harbour seals (Phoca vitulina). Can. J. Zool. Can. Zool. 80, 1569–1577 (2002).
Google Scholar
Dragon, A. C., Bar-Hen, A., Monestiez, P. & Guinet, C. Comparative analysis of methods for inferring successful foraging areas from Argos and GPS tracking data. Mar. Ecol. Prog. Ser. 452, 253–267 (2012).
Google Scholar
Dragon, A. C., Bar-Hen, A., Monestiez, P. & Guinet, C. Horizontal and vertical movements as predictors of foraging success in a marine predator. Mar. Ecol. Prog. Ser. 447, 243–257 (2012).
Google Scholar
Thums, M. T., Bradshaw, C. J. A. & Hindell, M. A. In situ measures of foraging success and prey encounter reveal marine habitat-dependent search strategies. Ecology 92, 1258–1270 (2011).
Google Scholar
Volpov, B. L., Hoskins, A. J., Battaile, B. C. & Viviant, M. Identification of prey captures in Australian fur seals (Arctocephalus pusillus doriferus) using head-mounted accelerometers: Field validation with animal-borne video cameras. PLoS ONE 10, e0128789 (2015).
Google Scholar
Gallon, S. et al. Identifying foraging events in deep diving southern elephant seals, Mirounga leonina, using acceleration data loggers. Deep. Res. Part II Top. Stud. Oceanogr. 88–89, 14–22 (2013).
Google Scholar
Viviant, M., Trites, A. W., Rosen, D. A. S., Monestiez, P. & Guinet, C. Prey capture attempts can be detected in Steller sea lions and other marine predators using accelerometers. Polar Biol. 33, 713–719 (2010).
Google Scholar
Watanabe, Y. Y. & Takahashi, A. Linking animal-borne video to accelerometers reveals prey capture variability. Proc. Natl. Acad. Sci. U.S.A. 110, 2199–2204 (2013).
Google Scholar
Martín Lopez, L. M., Miller, P. J. O., Aguilar de Soto, N. & Johnson, M. Gait switches in deep-diving beaked whales: biomechanical strategies for long-duration dives. J. Exp. Biol. 218, 1325–1338 (2015).
Google Scholar
Naito, Y., Bornemann, H., Takahashi, A., McIntyre, T. & Plötz, J. Fine-scale feeding behavior of Weddell seals revealed by a mandible accelerometer. Polar Sci. 4, 309–316 (2010).
Google Scholar
Ydesen, K. S. et al. What a jerk: prey engulfment revealed by high-rate, super-cranial accelerometry on a harbour seal (Phoca vitulina). J. Exp. Biol. 217, 2239–2243 (2014).
Google Scholar
Johnson, M., De Soto, N. A. & Madsen, P. T. Studying the behaviour and sensory ecology of marine mammals using acoustic recording tags: a review. Mar. Ecol. Prog. Ser. 395, 55–73 (2009).
Google Scholar
Goldbogen, J. A., Friedlaender, A. S., Calambokidis, J., McKenna, M. F. & Simon, M. Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology. Bioscience 63, 90–100 (2013).
Google Scholar
Wilson, R. P. et al. All at sea with animal tracks; methodological and analytical solutions for the resolution of movement. Deep. Res. Part II(54), 193–210 (2007).
Google Scholar
Baylis, A. M. M., Page, B. & Goldsworthy, S. D. Effect of seasonal changes in upwelling activity on the foraging locations of a wide-ranging central-place forager, the New Zealand fur seal. Can. J. Zool. 789, 774–789 (2008).
Google Scholar
McClintock, B. T., Russell, D. J. F., Matthiopoulos, J. & King, R. Combining individual animal movement and ancillary biotelemetry data to investigate population-level activity budgets. Ecology 94, 838–849 (2013).
Google Scholar
Siebert, U., Müller, S., Gilles, A., Sundermeyer, J. & Narberhaus, I. Chapter VII species profiles marine mammals authors: harbour porpoise red lists, conservation status and assessment. In Threatened Biodiversity in the German North and Baltic Seas-Sensitivities Towards Human Activities and the Effects of Climate Change (eds Narberhaus, I. & Krause, J.) 448–495 (Naturschutz und Biologische Vielfalt, 2012).
Ashmole, N. P. The regulation of numbers of tropical oceanic birds. Ibis (Lond. 1859) 103, 458–473 (1963).
Gaston, A. J., Ydenberg, R. C. & Smith, G. E. J. Ashmole’s halo and population regulation in seabirds. Mar. Ornithol. 35, 119–126 (2007).
Cronin, M., Pomeroy, P. & Jessopp, M. Size and seasonal influences on the foraging range of female grey seals in the northeast Atlantic. Mar. Biol. 160, 531–539 (2013).
Google Scholar
Dietz, R., Teilmann, J., Andersen, S. M., Rige, F. & Olsen, M. T. Movements and site fidelity of harbour seal (Phoca vitulina) in Kattegat, Denmark, with implications for the epidemiology of the phocine distemper virus. ICES J. Mar. Sci. 70, 186–195 (2013).
Google Scholar
Brasseur, S., Creuwels, J., Werf, B. & Reijnders, P. Deprivation indicates necessity for haul-out in harbor seals. Mar. Mamm. Sci. 12, 619–624 (1996).
Google Scholar
Lyamin, O. I., Mukhametov, L. M. & Siegel, J. M. Sleep in the northern fur seal. Curr. Opin. Neurobiol. 44, 144–151 (2017).
Google Scholar
Härkönen, T. et al. The 1988 and 2002 phocine distemper virus epidemics in European harbour seals. Dis. Aquat. Organ. 68, 115–130 (2006).
Google Scholar
Bodewes, R. et al. Avian influenza a(H10n7) virus–associated mass deaths among harbor seals. Emerg. Infect. Dis. 21, 720–722 (2015).
Google Scholar
Galatius, A. et al. Trilateral Surveys of Harbour Seals in the Wadden Sea and Helgoland in 2019 (2019).
Madsen, P. T., Wahlberg, M., Tougaard, J., Lucke, K. & Tyack, P. Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs. Mar. Ecol. Prog. Ser. 309, 279–295 (2006).
Google Scholar
Cremer, J. et al. EG-Seals Grey Seal Surveys in the Wadden Sea and Helgoland in 2018–2019-Steady Growth (2019).
Christensen, J. T. & Richardson, K. Stable isotope evidence of long-term changes in the North Sea food web structure. Mar. Ecol. Prog. Ser. 368, 1–8 (2008).
Google Scholar
Daan, N., Gislason, H., Pope, J. G. & Rice, J. C. Changes in the North Sea fish community: Evidence of indirect effects of fishing ?. ICES J. Mar. Sci. 62, 177–188 (2005).
Google Scholar
Baudron, A. R., Needle, C. L., Rijnsdorp, A. D. & Marshall, C. T. Warming temperatures and smaller body sizes: Synchronous changes in growth of North Sea fishes. Glob. Change Biol. 20, 1023–1031 (2014).
Google Scholar
Hasselmeier, I., Fonfara, S., Driver, J. & Siebert, U. Differential hematology profiles of free-ranging, rehabilitated, and captive harbor seals (Phoca vitulina) of the German North Sea. Aquat. Mamm. 34, 149–156 (2008).
Google Scholar
Wales, B., Tarazona, L. & Bavaro, M. Snapshot positioning for low-power miniaturised spaceborne GNSS receivers. In 2010 5th ESA Work. Satell. Navig. Technol. Eur. Work. GNSS Signals Signal Process.1–6 (IEEE, 2010).
Johnson, M. P. & Tyack, P. L. A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE J. Ocean. Eng. 28, 3–12 (2003).
Google Scholar
Sibly, R. M., Nott, H. M. R. & Fletcher, D. J. Splitting behaviour into bouts. Anim. Behav. 39, 63–69 (1990).
Google Scholar
Bowen, W. D., Tully, D., Boness, D. J., Bulheier, B. M. & Marshall, G. J. Prey-dependent foraging tactics and preyprofitability in a marine mammal. Mar. Ecol. Prog. Ser. 244, 235–245 (2002).
Google Scholar
Cox, S. L. et al. Processing of acceleration and dive data on-board satellite relay tags to investigate diving and foraging behaviour in free-ranging marine predators. Methods Ecol. Evol. 9, 64–77 (2018).
Google Scholar
Thompson, D. & Fedak, M. A. How long should a dive last? A simple model of foraging decisions by breath-hold divers in a patchy environment. Anim. Behav. 61, 287–296 (2001).
Google Scholar
Martín López, L. M., de Soto, N. A., Miller, P. & Johnson, M. Tracking the kinematics of caudal-oscillatory swimming: a comparison of two on-animal sensing methods. J. Exp. Biol. 219, 2103–2109. https://doi.org/10.1242/jeb.136242 (2016).
Google Scholar
Sato, K. et al. Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans. Proc. R. Soc. B Biol. Sci. 274, 471–477 (2007).
Google Scholar
Bartoń, K. MuMIn: Multi‐model inference. R package version 1.43.17. 75 (2020).
Source: Ecology - nature.com