in

Drivers and constraints on offshore foraging in harbour seals

  • 1.

    Orians, G. H. & Pearson, N. E. On the theory of central place foraging. Analysis of ecological systems. In Analysis of ecological systems Vol. 2 (eds Horn D. J., Mitchell R. D. & Stairs G. R.) 155–177 (Ohio State Univ. Press, 1979).

    Google Scholar 

  • 2.

    Biuw, M. et al. Variations in behavior and condition of a Southern Ocean top predator in relation to in situ oceanographic conditions. Proc. Natl. Acad. Sci. 104, 13705–13710 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Arcalís-Planas, A. et al. Limited use of sea ice by the Ross seal (Ommatophoca rossii), in Amundsen Sea, Antarctica, using telemetry and remote sensing data. Polar Biol. 38, 445–461 (2015).

    Article 

    Google Scholar 

  • 4.

    Staniland, I. J., Boyd, I. L. & Reid, K. An energy–distance trade-off in a central-place forager, the Antarctic fur seal (Arctocephalus gazella). Mar. Biol. 152, 233–241 (2007).

    Article 

    Google Scholar 

  • 5.

    Le Boeuf, B. et al. Foraging ecology of northern elephant seals. Ecol. Monogr. 70, 353–382 (2000).

    Article 

    Google Scholar 

  • 6.

    Adelung, D., Kierspel, M. A., Liebsch, N., Müller, G. & Wilson, R. P. Distribution of harbour seals in the German bight in relation to offshore wind power plants. In Offshore Wind Energy: Research on Environmental Impacts (eds Köller, J., Köppel J. & Peters, W.) 65–75 (Springer, 2006).

    Google Scholar 

  • 7.

    Thompson, P. M., Mackay, A., Tollit, D. J., Enderby, S. & Hammond, P. S. The influence of body size and sex on the characteristics of harbour seal foraging trips. Can. J. Zool. 76, 1044–1053 (1998).

    Article 

    Google Scholar 

  • 8.

    Wilson, R. P. et al. Options for modulating intra-specific competition in colonial pinnipeds : the case of harbour seals (Phoca vitulina) in the Wadden Sea. PeerJ 4, e957 (2015).

    Article 

    Google Scholar 

  • 9.

    Sharples, R. J., Moss, S. E., Patterson, T. A. & Hammond, P. S. Spatial variation in foraging behaviour of a marine top predator (Phoca vitulina) determined by a large-scale satellite tagging program. PLoS ONE 7, e37216 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Liebsch, N., Wilson, R. P. & Adelung, D. Utilisation of time and space by harbour seals (Phoca vitulina vitulina) determined by new remote-sensing methods. In Progress in Marine Conservation in Europe (eds von Nordheim, H., Boedeker, D. & Krause, J.C.) 179–188 (Springer, 2006).

    Google Scholar 

  • 11.

    Tougaard, J., Teilmann, J. & Tougaard, S. Harbour seal spatial distribution estimated from Argos satellite telemetry: overcoming positioning errors. Endanger. Species Res. 4, 113–122 (2008).

    Article 

    Google Scholar 

  • 12.

    Common Wadden Sea Secretariat. Report on the State of Conservation of the World Heritage property “ The Wadden Sea ( N1314 )” (2016).

  • 13.

    Brasseur, S. M. J. M. et al. Echoes from the past: regional variations in recovery within a harbour seal population. PLoS ONE 13, 1–21 (2018).

    Article 
    CAS 

    Google Scholar 

  • 14.

    Wolff, W. J. Ecology of the Wadden Sea (Balkema, 1983).

    Google Scholar 

  • 15.

    Baumann, H., Malzahn, A. M., Voss, R. & Temming, A. The German Bight (North Sea) is a nursery area for both locally and externally produced sprat juveniles. J. Sea Res. 61, 234–243 (2009).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Tulp, I., Bolle, L. J. & Rijnsdorp, A. D. Signals from the shallows: in search of common patterns in long-term trends in Dutch estuarine and coastal fish. J. Sea Res. 60, 54–73 (2008).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).

    Article 

    Google Scholar 

  • 18.

    Birt, V., Birt, T., Goulet, D., Cairns, D. & Montevecchi, W. Ashmole’s halo: direct evidence for prey depletion by a seabird. Mar. Ecol. Prog. Ser. 40, 205–208 (1987).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Russell, D. J. F. et al. Intrinsic and extrinsic drivers of activity budgets in sympatric grey and harbour seals. Oikos 124, 1462–1472 (2015).

    Article 

    Google Scholar 

  • 20.

    Sparling, C. E., Fedak, M. A. & Thompson, D. Eat now, pay later? Evidence of deferred food-processing costs in diving seals. Biol. Lett. 3, 94–98 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Ramasco, V., Biuw, M. & Nilssen, K. T. Improving time budget estimates through the behavioural interpretation of dive bouts in harbour seals. Anim. Behav. 94, 117–134 (2014).

    Article 

    Google Scholar 

  • 22.

    Mikkelsen, L. et al. Long-term sound and movement recording tags to study natural behavior and reaction to ship noise of seals. Ecol. Evol. 9(5), 2588–2601 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Carter, M. I. D., Bennett, K. A., Embling, C. B., Hosegood, P. J. & Russell, D. J. F. Navigating uncertain waters: a critical review of inferring foraging behaviour from location and dive data in pinnipeds. Mov. Ecol. 4, 1–20 (2016).

    Article 

    Google Scholar 

  • 24.

    Boyd, I. L. Temporal scales of foraging in a marine predator author. Ecology 77, 426–434 (1996).

    Article 

    Google Scholar 

  • 25.

    Bjorge, A. et al. Habitat Use and Diving Behaviour of Harbour Seals in a Coastal Archipelage in Norway 211–223 (Elsevier, 1995).

    Google Scholar 

  • 26.

    Lesage, V., Hammill, M. O. & Kovacs, K. M. Functional classification of harbor seal (Phoca vitulina) dives using depth profiles, swimming velocity, and an index of foraging success. Can. J. Zool. 77, 74–87 (1999).

    Article 

    Google Scholar 

  • 27.

    Baechler, J., Beck, C. A. & Bowen, W. Dive shapes reveal temporal changes in the foraging behaviour of different age and sex classes of harbour seals (Phoca vitulina). Can. J. Zool. Can. Zool. 80, 1569–1577 (2002).

    Article 

    Google Scholar 

  • 28.

    Dragon, A. C., Bar-Hen, A., Monestiez, P. & Guinet, C. Comparative analysis of methods for inferring successful foraging areas from Argos and GPS tracking data. Mar. Ecol. Prog. Ser. 452, 253–267 (2012).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Dragon, A. C., Bar-Hen, A., Monestiez, P. & Guinet, C. Horizontal and vertical movements as predictors of foraging success in a marine predator. Mar. Ecol. Prog. Ser. 447, 243–257 (2012).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Thums, M. T., Bradshaw, C. J. A. & Hindell, M. A. In situ measures of foraging success and prey encounter reveal marine habitat-dependent search strategies. Ecology 92, 1258–1270 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Volpov, B. L., Hoskins, A. J., Battaile, B. C. & Viviant, M. Identification of prey captures in Australian fur seals (Arctocephalus pusillus doriferus) using head-mounted accelerometers: Field validation with animal-borne video cameras. PLoS ONE 10, e0128789 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Gallon, S. et al. Identifying foraging events in deep diving southern elephant seals, Mirounga leonina, using acceleration data loggers. Deep. Res. Part II Top. Stud. Oceanogr. 88–89, 14–22 (2013).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Viviant, M., Trites, A. W., Rosen, D. A. S., Monestiez, P. & Guinet, C. Prey capture attempts can be detected in Steller sea lions and other marine predators using accelerometers. Polar Biol. 33, 713–719 (2010).

    Article 

    Google Scholar 

  • 34.

    Watanabe, Y. Y. & Takahashi, A. Linking animal-borne video to accelerometers reveals prey capture variability. Proc. Natl. Acad. Sci. U.S.A. 110, 2199–2204 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Martín Lopez, L. M., Miller, P. J. O., Aguilar de Soto, N. & Johnson, M. Gait switches in deep-diving beaked whales: biomechanical strategies for long-duration dives. J. Exp. Biol. 218, 1325–1338 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Naito, Y., Bornemann, H., Takahashi, A., McIntyre, T. & Plötz, J. Fine-scale feeding behavior of Weddell seals revealed by a mandible accelerometer. Polar Sci. 4, 309–316 (2010).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Ydesen, K. S. et al. What a jerk: prey engulfment revealed by high-rate, super-cranial accelerometry on a harbour seal (Phoca vitulina). J. Exp. Biol. 217, 2239–2243 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Johnson, M., De Soto, N. A. & Madsen, P. T. Studying the behaviour and sensory ecology of marine mammals using acoustic recording tags: a review. Mar. Ecol. Prog. Ser. 395, 55–73 (2009).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Goldbogen, J. A., Friedlaender, A. S., Calambokidis, J., McKenna, M. F. & Simon, M. Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology. Bioscience 63, 90–100 (2013).

    Article 

    Google Scholar 

  • 40.

    Wilson, R. P. et al. All at sea with animal tracks; methodological and analytical solutions for the resolution of movement. Deep. Res. Part II(54), 193–210 (2007).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Baylis, A. M. M., Page, B. & Goldsworthy, S. D. Effect of seasonal changes in upwelling activity on the foraging locations of a wide-ranging central-place forager, the New Zealand fur seal. Can. J. Zool. 789, 774–789 (2008).

    Article 

    Google Scholar 

  • 42.

    McClintock, B. T., Russell, D. J. F., Matthiopoulos, J. & King, R. Combining individual animal movement and ancillary biotelemetry data to investigate population-level activity budgets. Ecology 94, 838–849 (2013).

    Article 

    Google Scholar 

  • 43.

    Siebert, U., Müller, S., Gilles, A., Sundermeyer, J. & Narberhaus, I. Chapter VII species profiles marine mammals authors: harbour porpoise red lists, conservation status and assessment. In Threatened Biodiversity in the German North and Baltic Seas-Sensitivities Towards Human Activities and the Effects of Climate Change (eds Narberhaus, I. & Krause, J.) 448–495 (Naturschutz und Biologische Vielfalt, 2012).

    Google Scholar 

  • 44.

    Ashmole, N. P. The regulation of numbers of tropical oceanic birds. Ibis (Lond. 1859) 103, 458–473 (1963).

    Google Scholar 

  • 45.

    Gaston, A. J., Ydenberg, R. C. & Smith, G. E. J. Ashmole’s halo and population regulation in seabirds. Mar. Ornithol. 35, 119–126 (2007).

    Google Scholar 

  • 46.

    Cronin, M., Pomeroy, P. & Jessopp, M. Size and seasonal influences on the foraging range of female grey seals in the northeast Atlantic. Mar. Biol. 160, 531–539 (2013).

    Article 

    Google Scholar 

  • 47.

    Dietz, R., Teilmann, J., Andersen, S. M., Rige, F. & Olsen, M. T. Movements and site fidelity of harbour seal (Phoca vitulina) in Kattegat, Denmark, with implications for the epidemiology of the phocine distemper virus. ICES J. Mar. Sci. 70, 186–195 (2013).

    Article 

    Google Scholar 

  • 48.

    Brasseur, S., Creuwels, J., Werf, B. & Reijnders, P. Deprivation indicates necessity for haul-out in harbor seals. Mar. Mamm. Sci. 12, 619–624 (1996).

    Article 

    Google Scholar 

  • 49.

    Lyamin, O. I., Mukhametov, L. M. & Siegel, J. M. Sleep in the northern fur seal. Curr. Opin. Neurobiol. 44, 144–151 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Härkönen, T. et al. The 1988 and 2002 phocine distemper virus epidemics in European harbour seals. Dis. Aquat. Organ. 68, 115–130 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Bodewes, R. et al. Avian influenza a(H10n7) virus–associated mass deaths among harbor seals. Emerg. Infect. Dis. 21, 720–722 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Galatius, A. et al. Trilateral Surveys of Harbour Seals in the Wadden Sea and Helgoland in 2019 (2019).

  • 53.

    Madsen, P. T., Wahlberg, M., Tougaard, J., Lucke, K. & Tyack, P. Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs. Mar. Ecol. Prog. Ser. 309, 279–295 (2006).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Cremer, J. et al. EG-Seals Grey Seal Surveys in the Wadden Sea and Helgoland in 2018–2019-Steady Growth (2019).

  • 55.

    Christensen, J. T. & Richardson, K. Stable isotope evidence of long-term changes in the North Sea food web structure. Mar. Ecol. Prog. Ser. 368, 1–8 (2008).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Daan, N., Gislason, H., Pope, J. G. & Rice, J. C. Changes in the North Sea fish community: Evidence of indirect effects of fishing ?. ICES J. Mar. Sci. 62, 177–188 (2005).

    Article 

    Google Scholar 

  • 57.

    Baudron, A. R., Needle, C. L., Rijnsdorp, A. D. & Marshall, C. T. Warming temperatures and smaller body sizes: Synchronous changes in growth of North Sea fishes. Glob. Change Biol. 20, 1023–1031 (2014).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Hasselmeier, I., Fonfara, S., Driver, J. & Siebert, U. Differential hematology profiles of free-ranging, rehabilitated, and captive harbor seals (Phoca vitulina) of the German North Sea. Aquat. Mamm. 34, 149–156 (2008).

    Article 

    Google Scholar 

  • 59.

    Wales, B., Tarazona, L. & Bavaro, M. Snapshot positioning for low-power miniaturised spaceborne GNSS receivers. In 2010 5th ESA Work. Satell. Navig. Technol. Eur. Work. GNSS Signals Signal Process.1–6 (IEEE, 2010).

  • 60.

    Johnson, M. P. & Tyack, P. L. A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE J. Ocean. Eng. 28, 3–12 (2003).

    ADS 
    Article 

    Google Scholar 

  • 61.

    Sibly, R. M., Nott, H. M. R. & Fletcher, D. J. Splitting behaviour into bouts. Anim. Behav. 39, 63–69 (1990).

    Article 

    Google Scholar 

  • 62.

    Bowen, W. D., Tully, D., Boness, D. J., Bulheier, B. M. & Marshall, G. J. Prey-dependent foraging tactics and preyprofitability in a marine mammal. Mar. Ecol. Prog. Ser. 244, 235–245 (2002).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Cox, S. L. et al. Processing of acceleration and dive data on-board satellite relay tags to investigate diving and foraging behaviour in free-ranging marine predators. Methods Ecol. Evol. 9, 64–77 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Thompson, D. & Fedak, M. A. How long should a dive last? A simple model of foraging decisions by breath-hold divers in a patchy environment. Anim. Behav. 61, 287–296 (2001).

    Article 

    Google Scholar 

  • 65.

    Martín López, L. M., de Soto, N. A., Miller, P. & Johnson, M. Tracking the kinematics of caudal-oscillatory swimming: a comparison of two on-animal sensing methods. J. Exp. Biol. 219, 2103–2109. https://doi.org/10.1242/jeb.136242 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Sato, K. et al. Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans. Proc. R. Soc. B Biol. Sci. 274, 471–477 (2007).

    Article 

    Google Scholar 

  • 67.

    Bartoń, K. MuMIn: Multi‐model inference. R package version 1.43.17. 75 (2020).


  • Source: Ecology - nature.com

    Transforming lives by providing safe drinking water

    Local adaptation to continuous mowing makes the noxious weed Solanum elaeagnifolium a superweed candidate by improving fitness and defense traits