in

Dynamic allometric scaling of tree biomass and size

  • 1.

    Weiskittel, A. R. et al. A call to improve methods for estimating tree biomass for regional and national assessments. J. For. 113, 414–424 (2015).

    Google Scholar 

  • 2.

    Huang, H., Liu, C., Wang, X., Zhou, X. & Gong, P. Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China. Remote Sens. Environ. 221, 225–234 (2019).

    Article  Google Scholar 

  • 3.

    Zianis, D. & Seura, S. Biomass and stem volume equations for tree species in Europe. Silva Fenn. Monogr. 4, 1–63 (2005).

    Google Scholar 

  • 4.

    Henry, M. et al. Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fenn. 45, 477–569 (2011).

    Article  Google Scholar 

  • 5.

    Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. Comprehensive Database of Diameter-Based Biomass Regressions for North American Tree Species (USDA Forest Service, 2003).

  • 6.

    Yuen, J. Q., Fung, T. & Ziegler, A. D. Review of allometric equations for major land covers in SE Asia: uncertainty and implications for above- and below-ground carbon estimates. For. Ecol. Manag. 360, 323–340 (2016).

    Article  Google Scholar 

  • 7.

    Liu, C. et al. Separating regressions for model fitting to reduce the uncertainty in forest volume–biomass relationship. Forests 10, 658 (2019).

    Article  Google Scholar 

  • 8.

    Niklas, K. J. A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories. New Phytol. 171, 27–40 (2006).

    PubMed  Article  Google Scholar 

  • 9.

    Smith, J. E., Heath, L. S. & Jenkins, J. C. Forest Volume-to-Biomass Models and Estimates of Mass for Live and Standing Dead Trees of U.S. Forests (USDA Forest Service, 2003).

  • 10.

    Jalkanen, A., Mäkipää, R., Ståhl, G., Lehtonen, A. & Petersson, H. Silviculture-driven vegetation change in a European temperate deciduous forest. Ann. For. Sci. 62, 313–323 (2005).

    Article  Google Scholar 

  • 11.

    Guo, Z., Fang, J., Pan, Y. & Birdsey, R. Inventory-based estimates of forest biomass carbon stocks in China: a comparison of three methods. For. Ecol. Manag. 259, 1225–1231 (2010).

    Article  Google Scholar 

  • 12.

    Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).

    Article  Google Scholar 

  • 13.

    Ishihara, M. I. et al. Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests. Ecol. Appl. 25, 1433–1446 (2015).

    PubMed  Article  Google Scholar 

  • 14.

    Xiang, W. et al. General allometric equations and biomass allocation of Pinus massoniana trees on regional scale in southern China. Ecol. Res. 26, 697–711 (2011).

    Article  Google Scholar 

  • 15.

    Parresol, B. R. Assessing tree and stand biomass: a review with examples and critical comparisons. For. Sci. 45, 573–593 (1999).

    Google Scholar 

  • 16.

    Wirth, C., Schumacher, J. & Schulze, E.-D. Generic biomass functions for Norway spruce in Central Europe—a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol. 24, 121–139 (2004).

    PubMed  Article  Google Scholar 

  • 17.

    Rutishauser, E. et al. Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. For. Ecol. Manag. 307, 219–225 (2013).

    Article  Google Scholar 

  • 18.

    Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Gonzalez-Benecke, C. A. et al. Local and general above-stump biomass functions for loblolly pine and slash pine trees. For. Ecol. Manag. 334, 254–276 (2014).

    Article  Google Scholar 

  • 20.

    Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254 (2014).

    Article  Google Scholar 

  • 21.

    Picard, N., Rutishauser, E., Ploton, P., Ngomanda, A. & Henry, M. Should tree biomass allometry be restricted to power models? For. Ecol. Manag. 353, 156–163 (2015).

    Article  Google Scholar 

  • 22.

    Sheil, D. et al. Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Funct. Ecol. 31, 568–581 (2017).

    Article  Google Scholar 

  • 23.

    Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).

    PubMed  Article  Google Scholar 

  • 24.

    Schafer, J. L. & Mack, M. C. Growth, biomass, and allometry of resprouting shrubs after fire in scrubby flatwoods. Am. Midl. Nat. 172, 266–284 (2014).

    Article  Google Scholar 

  • 25.

    Poorter, H. et al. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol. 208, 736–749 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Smith, R. J. Rethinking allometry. J. Theor. Biol. 87, 97–111 (1980).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Dassot, M. et al. Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment. Comput. Electron. Agric. 89, 86–93 (2012).

    Article  Google Scholar 

  • 28.

    Disney, M. I. et al. Weighing trees with lasers: advances, challenges and opportunities. Interface Focus 8, 201700484 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Sarrus, P. F. & Rameaux, J.-F. Application des sciences accessoires et principalement des mathématiques à la physiologie générale. Bull. Acad. R. Méd. 3, 1094–1100 (1838).

    Google Scholar 

  • 30.

    Huxley, J. S. & Teissier, G. Terminology of relative growth. Nature 137, 780–781 (1936).

    Article  Google Scholar 

  • 31.

    Gayon, J. History of the concept of allometry. Am. Zool. 40, 748–758 (2000).

    Google Scholar 

  • 32.

    Rubner, M. Über den einfluss der körpergrösse auf stoff- und kraftwechsel. Z. Biol. 19, 536–562 (1883).

    Google Scholar 

  • 33.

    von Bertalanffy, L. General System Theory: Foundations, Development, Applications (George Braziller, 1973).

  • 34.

    Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).

    CAS  Article  Google Scholar 

  • 35.

    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    West, G. B., Brown, J. H. & Enquist, B. J. A general model for ontogenetic growth. Nature 413, 628–631 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  • 38.

    Bokma, F. Evidence against universal metabolic allometry. Funct. Ecol. 18, 184–187 (2004).

    Article  Google Scholar 

  • 39.

    Dodds, P. S., Rothman, D. H. & Weitz, J. S. Re-examination of the “3/4-law” of metabolism. J. Theor. Biol. 209, 9–27 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Kozłowski, J. & Konarzewski, M. Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant? Funct. Ecol. 18, 283–289 (2004).

    Article  Google Scholar 

  • 41.

    Henry, M. et al. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For. Ecol. Manag. 260, 1375–1388 (2010).

    Article  Google Scholar 

  • 42.

    Satoo, T. Notes on Kittredge’s method of estimation of amount of leaves of forest stand. Jpn. J. For. 44, 267–272 (1962).

    Google Scholar 

  • 43.

    Ruark, G. A., Martin, G. L. & Bockheim, J. G. Comparison of constant and variable allometric ratios for estimating populus tremuloides biomass. For. Sci. 33, 294–300 (1987).

    Google Scholar 

  • 44.

    Mori, S. et al. Mixed-power scaling of whole-plant respiration from seedlings to giant trees. Proc. Natl Acad. Sci. USA 107, 1447–1451 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Tjørve, E. Shapes and functions of species-area curves (II): a review of new models and parameterizations. J. Biogeogr. 36, 1435–1445 (2009).

    Article  Google Scholar 

  • 46.

    Luo, Y., Wang, X., Zhang, X. & Lu, F. Biomass and Its Allocation of Forest Ecosystems in China [in Chinese] (Chinese Forestry Publishing House, 2013).

  • 47.

    Stovall, A. E. L., Shugart, H. H., Stovall, A. E. L. & Anderson-Teixeira, K. J. Assessing terrestrial laser scanning for developing non-destructive biomass allometry. For. Ecol. Manag. 427, 217–229 (2018).

    Article  Google Scholar 

  • 48.

    Packard, G. C. Is logarithmic transformation necessary in allometry? Biol. J. Linn. Soc. 109, 476–486 (2013).

    Article  Google Scholar 

  • 49.

    Mascaro, J., Litton, C. M., Hughes, R. F., Uowolo, A. & Schnitzer, S. A. Is logarithmic transformation necessary in allometry? Ten, one-hundred, one-thousand-times yes. Biol. J. Linn. Soc. 111, 230–233 (2014).

    Article  Google Scholar 

  • 50.

    Sprugel, D. G. Correcting for bias in log-transformed allometric equations. Ecology 64, 209–210 (1983).

    Article  Google Scholar 

  • 51.

    Peichl, M. & Arain, M. A. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. For. Ecol. Manag. 253, 68–80 (2007).

    Article  Google Scholar 

  • 52.

    Wolf, A., Field, C. B. & Berry, J. A. Allometric growth and allocation in forests: a perspective from FLUXNET. Ecol. Appl. 21, 1546–1556 (2011).

    PubMed  Article  Google Scholar 

  • 53.

    Litton, C. M., Raich, J. W. & Ryan, M. G. Carbon allocation in forest ecosystems. Glob. Change Biol. 13, 2089–2109 (2007).

    Article  Google Scholar 

  • 54.

    Vallet, P., Dhôte, J. F., Moguédec, G. L. E., Ravart, M. & Pignard, G. Development of total aboveground volume equations for seven important forest tree species in France. For. Ecol. Manag. 229, 98–110 (2006).

    Article  Google Scholar 

  • 55.

    Cannell, M. G. R. World Forest Biomass and Primary Production Data (Academic Press, 1982).

  • 56.

    Usoltsev, V. A. Forest Biomass and Primary Production Database for Eurasia (Ural State Forest Engineering Univ., 2013).

  • 57.

    West, G. B. & Brown, J. H. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 208, 1575–1592 (2005).

    PubMed  Article  Google Scholar 

  • 58.

    Reich, P. B. et al. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439, 457–461 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Li, H., Han, X. & Wu, J. Lack of evidence for 3/4 scaling of metabolism in terrestrial plants. J. Integr. Plant Biol. 47, 1173–1183 (2005).

    Article  Google Scholar 

  • 60.

    Zhou, X. et al. Correcting the overestimate of forest biomass carbon on the national scale. Method Ecol. Evol. 7, 447–455 (2016).

    Article  Google Scholar 

  • 61.

    Enquist, B. J., Brown, J. H. & West, G. B. Allometric scaling of plant energetics and population density. Nature 395, 163–165 (1998).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Aerosols from pollution, desert storms, and forest fires may intensify thunderstorms

    Portable device can quickly detect plant stress