in

Ecology directs host–parasite coevolutionary trajectories across Daphnia–microparasite populations

  • 1.

    Paterson, S. et al. Antagonistic coevolution accelerates molecular evolution. Nature 464, 275–278 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Schulte, R. D., Makus, C., Hasert, B., Michiels, N. K. & Schulenburg, H. Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite. Proc. Natl Acad. Sci. USA 107, 7359–7364 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Koskella, B. & Lively, C. M. Evidence for negative frequency-dependent selection during experimental coevolution of a freshwater snail and a sterilizing trematode. Evolution 63, 2213–2221 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Decaestecker, E. et al. Host–parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450, 870–873 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Gómez, P. & Buckling, A. Bacteria–phage antagonistic coevolution in soil. Science 332, 106–109 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 6.

    Refardt, D. & Ebert, D. Inference of parasite local adaptation using two different fitness components. J. Evol. Biol. 20, 921–929 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Duffy, M. A., Hall, S. R., Cáceres, C. E. & Ives, A. R. Rapid evolution, seasonality, and the termination of parasite epidemics. Ecology 90, 1441–1448 (2009).

    PubMed  Article  Google Scholar 

  • 8.

    Springer, Y. P. Clinical resistance structure and pathogen local adaptation in a serpentine flax–flax rust interaction. Evolution 61, 1812–1822 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Tack, A. J. M., Laine, A.-L., Burdon, J. J., Bissett, A. & Thrall, P. H. Below-ground abiotic and biotic heterogeneity shapes above-ground infection outcomes and spatial divergence in a host–parasite interaction. New Phytol. 207, 1159–1169 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Wolinska, J. & King, K. C. Environment can alter selection in host–parasite interactions. Trends Parasitol. 25, 236–244 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Auld, S. K. J. R., Hall, S. R., Ochs, J. H., Sebastian, M. & Duffy, M. A. Predators and patterns of within-host growth can mediate both among-host competition and evolution of transmission potential of parasites. Am. Nat. 184, S77–S90 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Wright, R. C. T., Brockhurst, M. A. & Harrison, E. Ecological conditions determine extinction risk in co-evolving bacteria–phage populations. BMC Evol. Biol. 16, 227 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Duffy, M. A. et al. Ecological context influences epidemic size and parasite-driven evolution. Science 335, 1636–1638 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Auld, S. K. J. R. & Brand, J. Environmental variation causes different (co) evolutionary routes to the same adaptive destination across parasite populations. Evol. Lett. 1, 245–254 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Su, M. & Boots, M. The impact of resource quality on the evolution of virulence in spatially heterogeneous environments. J. Theor. Biol. 416, 1–7 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Auld, S. K. J. R. & Tinsley, M. C. The evolutionary ecology of complex lifecycle parasites: linking phenomena with mechanisms. Heredity 114, 125–132 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Cardon, M., Loot, G., Grenouillet, G. & Blanchet, S. Host characteristics and environmental factors differentially drive the burden and pathogenicity of an ectoparasite: a multilevel causal analysis. J. Anim. Ecol. 80, 657–667 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Mahmud, M. A., Bradley, J. E. & MacColl, A. D. C. Abiotic environmental variation drives virulence evolution in a fish host–parasite geographic mosaic. Funct. Ecol. 31, 2138–2146 (2017).

    Article  Google Scholar 

  • 19.

    Arruda, J. A., Marzolf, G. R. & Faulk, R. T. The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology 64, 1225–1235 (1983).

    Article  Google Scholar 

  • 20.

    Mostowy, R. & Engelstädter, J. The impact of environmental change on host–parasite coevolutionary dynamics. Proc. R. Soc. B 278, 2283–2292 (2011).

    PubMed  Article  Google Scholar 

  • 21.

    Thompson, J. N. The Geographic Mosaic of Coevolution (Univ. Chicago Press, 2005).

  • 22.

    Brett, M. T. Chaoborus and fish-mediated influences on Daphnia longispina population structure, dynamics and life history strategies. Oecologia 89, 69–77 (1992).

    PubMed  Article  Google Scholar 

  • 23.

    Goss, L. B. & Bunting, D. L. Daphnia development and reproduction: responses to temperature. J. Therm. Biol. 8, 375–380 (1983).

    Article  Google Scholar 

  • 24.

    Luijckx, P., Fienberg, H., Duneau, D. & Ebert, D. A matching-allele model explains host resistance to parasites. Curr. Biol. 23, 1085–1088 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Bento, G. et al. The genetic basis of resistance and matching-allele interactions of a host–parasite system: the Daphnia magnaPasteuria ramosa model. PLoS Genet. 13, e1006596 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Grosberg, R. K. Mate selection and the evolution of highly polymorphic self/nonself recognition genes. Science 289, 2111–2114 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Hutchinson, G. E. The Ecological Theater and the Evolutionary Play (Yale Univ. Press, 1965).

  • 28.

    Stuart, Y. E. et al. Contrasting effects of environment and genetics generate a continuum of parallel evolution. Nat. Ecol. Evol. 1, 0158 (2017).

    Article  Google Scholar 

  • 29.

    Klüttgen, B., Dülmer, U., Engels, M. & Ratte, H. ADaM, an artificial freshwater for the culture of zooplankton. Water Res. 28, 743–746 (1994).

    Article  Google Scholar 

  • 30.

    Ebert, D., Zschokke-Rohringer, C. D. & Carius, H. J. Within- and between-population variation for resistance of Daphnia magna to the bacterial endoparasite Pasteuria ramosa. Proc. R. Soc. B 265, 2127–2134 (1998).

    Article  Google Scholar 

  • 31.

    Auld, S. K. J. R. & Brand, J. Simulated climate change, epidemic size, and host evolution across host–parasite populations. Glob. Change Biol. 23, 5045–5053 (2017).

    Article  Google Scholar 

  • 32.

    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    Google Scholar 

  • 33.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • 34.

    Brereton, R. G. & Lloyd, G. R. Re-evaluating the role of the Mahalanobis distance measure. J. Chemom. 30, 134–143 (2016).

    CAS  Article  Google Scholar 

  • 35.

    D’Orazio, M. StatMatch: Statistical Matching or Data Fusion. R package version 1.4.0 (2019).

  • 36.

    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–22 (2007).

    Article  Google Scholar 

  • 37.

    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article  Google Scholar 

  • 38.

    Auld, S. K. J. R., Wilson, P. J. & Little, T. J. Rapid change in parasite infection traits over the course of an epidemic in a wild host–parasite population. Oikos 123, 232–238 (2014).

    Article  Google Scholar 

  • 39.

    Shocket, M. S. et al. Parasite rearing and infection temperatures jointly influence disease transmission and shape seasonality of epidemics. Ecology 99, 1975–1987 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Duncan, A. B., Mitchell, S. E. & Little, T. J. Parasite-mediated selection and the role of sex and diapause in Daphnia. J. Evol. Biol. 19, 1183–1189 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Auld, S. K. J. R. et al. Variation in costs of parasite resistance among natural host populations. J. Evol. Biol. 26, 2479–2486 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Laine, A.-L. Evolution of host resistance: looking for coevolutionary hotspots at small spatial scales. Proc. R. Soc. B 273, 267–273 (2006).

    PubMed  Article  Google Scholar 

  • 43.

    Lohse, K., Gutierrez, A. & Kaltz, O. Experimental evolution of resistance in Paramecium caudatum against the bacterial parasite Holospora undulata. Evolution 60, 1177–1186 (2006).

    Article  Google Scholar 

  • 44.

    Duffy, M. A. & Sivars-Becker, L. Rapid evolution and ecological host–parasite dynamics. Ecol. Lett. 10, 44–53 (2007).

    PubMed  Article  Google Scholar 

  • 45.

    Brewer, M. J., Butler, A. & Cooksley, S. L. The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity. Methods Ecol. Evol. 7, 679–692 (2016).

    Article  Google Scholar 

  • 46.

    Shipley, B. A new inferential test for path models based on directed acyclic graphs. Struct. Equ. Model. 7, 206–218 (2000).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Predator-induced defence in a dinoflagellate generates benefits without direct costs

    Movement behavior of a solitary large carnivore within a hotspot of human-wildlife conflicts in India