in

Effects of temperature on the behaviour and metabolism of an intertidal foraminifera and consequences for benthic ecosystem functioning

  • 1.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 3.

    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).

    Article  Google Scholar 

  • 4.

    Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).

    ADS  Article  Google Scholar 

  • 5.

    Smale, D. A., Wernberg, T. & Vanderklift, M. A. Regional-scale variability in the response of benthic macroinvertebrate assemblages to a marine heatwave. Mar. Ecol. Prog. Ser. 568, 17–30 (2017).

    ADS  Article  Google Scholar 

  • 6.

    Benthuysen, J. A., Oliver, E. C. J., Feng, M. & Marshall, A. G. Extreme marine warming across tropical Australia during austral summer 2015–2016. J. Geophys. Res. Oceans 123, 1301–1326 (2018).

    ADS  Article  Google Scholar 

  • 7.

    Della-Marta, P., Haylock, M., Luterbacher, J. & Wanner, H. Doubled length of western European summer heat waves since 1880. J. Geophys. Res. 112, D15103 (2007).

    ADS  Article  Google Scholar 

  • 8.

    Oswald, E. & Rood, R. A trend analysis of the 1930–2010 extreme heat events in the Continental United States. J. Appl. Meteorol. Climatol. 53, 565–582 (2014).

    ADS  Article  Google Scholar 

  • 9.

    Perkins, S. & Alexander, L. V. On the measurement of heat waves. J. Clim. 26, 4500–4517 (2013).

    ADS  Article  Google Scholar 

  • 10.

    Lima, F. P. & Wethey, D. S. Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat. Commun. 3, 704 (2012).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 11.

    Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162 (2018).

    Article  Google Scholar 

  • 12.

    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    ADS  Article  Google Scholar 

  • 13.

    Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).

    ADS  PubMed  Article  Google Scholar 

  • 14.

    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).

    ADS  Article  Google Scholar 

  • 15.

    Caputi, N. et al. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecol. Evol. 6, 3583–3593 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Caputi, N. et al. Factors affecting the recovery of invertebrates stocks from the 2011 Western Australian extreme marine heatwave. Front. Mar. Sci. 6, 484 (2019).

    Article  Google Scholar 

  • 17.

    Seuront, L., Nicastro, K. R., Zardi, G. I. & Goberville, E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 17498 (2019).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Murphy, E. A. K. & Reidenbach, M. A. Oxygen transport in periodically ventilated polychaete burrows. Mar. Biol. 163, 208 (2016).

    Article  CAS  Google Scholar 

  • 19.

    Goulletquer, P. et al. Summer mortality of the Pacific cupped oyster Crassostrea gigas in the Bay of Marennes-Oléron (France). In Mariculture Committee CM 1998/CC: 14 (1998).

  • 20.

    Li, M., Lei, Y., Li, T. & Jian, Z. Impact of temperature on intertidal foraminifera: Results from laboratory culture experiment. J. Exp. Mar. Biol. Ecol. 520, 151224 (2019).

    Article  Google Scholar 

  • 21.

    Pörtner, H. O. Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).

    ADS  PubMed  Article  Google Scholar 

  • 22.

    Pörtner, H. O. Integrating climate-related stressor effects on marine organisms: Unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Prog. Ser. 470, 273–290 (2012).

    ADS  Article  CAS  Google Scholar 

  • 23.

    Straub, S. C. et al. Resistance, extinction, and everything in between—The diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6, 763 (2019).

    Article  Google Scholar 

  • 24.

    Stillman, J. H. & Somero, G. N. Adaptation to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): Correlation of physiology, biochemistry and morphology with vertical distribution. J. Exp. Biol. 199, 1845–1855 (1996).

    CAS  PubMed  Google Scholar 

  • 25.

    Joint, I. & Smale, D. A. Marine heatwaves and optimal temperatures for microbial assemblage activity. FEMS Microbiol. Ecol. 93, 243 (2017).

    Article  CAS  Google Scholar 

  • 26.

    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Nature 322, 690–692 (2008).

    Google Scholar 

  • 27.

    Wu, F. et al. Effects of seawater pH and temperature on foraging behavior of the Japanese stone crab Charybdis japonica. Mar. Pollut. Bull. 120, 99–108 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    da Vianna, B. S., Miyai, C. A., Augusto, A. & Costa, T. M. Effects of temperature increase on the physiology and behavior of fiddler crabs. Physiol. Behav. 215, 112765 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    François, F., Poggiale, J.-C., Durbec, J.-P. & Stora, G. A new approach for the modelling of sediment reworking induced by a macrobenthic community. Acta. Biotheor. 45, 295–319 (1997).

    Article  Google Scholar 

  • 30.

    Kristensen, E. et al. What is bioturbation? the need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 446, 285–302 (2012).

    ADS  Article  Google Scholar 

  • 31.

    Piot, A., Nozais, C. & Archambault, P. Meiofauna affect the macrobenthic biodiversity—Ecosystem functioning relationship. Oikos 123, 1–11 (2013).

    Google Scholar 

  • 32.

    Bonaglia, S. et al. Meiofauna improve oxygenation and accelerate sulfide removal in the seasonally hypoxic seabed. Mar. Environ. Res. 159, 104968 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Bonaglia, S., Nascimento, F. J. A., Bartoli, M., Klawonn, I. & Brüchert, V. Meiofauna increases bacterial denitrification in marine sediments. Nat. Commun. 5, 5133 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Mermillod-Blondin, F. & Rosenberg, R. Ecosystem engineering: The impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquat. Sci. 68, 434–442 (2006).

    CAS  Article  Google Scholar 

  • 35.

    Kristensen, E. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J. Sea Res. 59, 30–43 (2008).

    ADS  Article  Google Scholar 

  • 36.

    Pascal, L., Maire, O., Deflandre, B., Romero-Ramirez, A. & Grémare, A. Linking behaviours, sediment reworking, bioirrigation and oxygen dynamics in a soft-bottom ecosystem engineer: The mud shrimp Upogebia pusilla (Petagna 1792). J. Exp. Mar. Biol. Ecol. 516, 67–78 (2019).

    Article  Google Scholar 

  • 37.

    Risgaard-Petersen, N. et al. Evidence for complete denitrification in a benthic foraminifer. Nature 443, 93–96 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 38.

    Høgslund, S., Revsbech, N. P., Cedhagen, T., Nielsen, L. P. & Gallardo, V. A. Denitrification, nitrate turnover, and aerobic respiration by benthic foraminiferans in the oxygen minimum zone off Chile. J. Exp. Mar. Biol. Ecol. 359, 85–91 (2008).

    Article  CAS  Google Scholar 

  • 39.

    Pike, J., Bernhard, J. M., Moreton, S. & Butler, I. Microbiorrigation of marine sediments in dysoxic environments: Implication for early sediment fabric formation and diagenetic processes. Geology 29, 923–926 (2001).

    ADS  Article  Google Scholar 

  • 40.

    Woulds, C. et al. Oxygen as a control on seafloor biological communities and their roles in sedimentary carbon cycling. Limnol. Oceanogr. 52, 1698–1709 (2007).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Bernhard, J. M., Mollo-Christensen, E., Eisenkolb, N. & Starczak, V. R. Tolerance of allogromid Foraminifera to severaly elevated carbon dioxide concentrations: Implications to future ecosystem functioning and paleoceanographic interpretations. Glob. Planet. Change 65, 107–114 (2009).

    ADS  Article  Google Scholar 

  • 42.

    Bradshaw, J. Laboratory experiments on the ecology of foraminifera. Contrib. Cushman Found. Foramin. Res. 12, 87–106 (1961).

    Google Scholar 

  • 43.

    Pascal, P.-Y., Dupuy, C., Richard, P. & Niquil, N. Bacterivory in the common foraminifer Ammonia tepida: Isotope tracer experiment and the controlling factors. J. Exp. Mar. Biol. Ecol. 359, 55–61 (2008).

    CAS  Article  Google Scholar 

  • 44.

    Wukovits, J., Enge, A. J., Wanek, W., Watzka, M. & Heinz, P. Increased temperature causes different carbon and nitrogen processing patterns in two common intertidal foraminifera (Ammonia tepida and Haynesina germanica). Biogeosciences 14, 2815–2829 (2017).

    ADS  CAS  Article  Google Scholar 

  • 45.

    Schmidt, C., Heinz, P., Kucera, M. & Uthicke, S. Temperature-induced stress leads to bleaching in larger benthic foraminifera hosting endosymbiotic diatoms. Limnol. Oceanogr. 56, 1587–1602 (2011).

    ADS  Article  Google Scholar 

  • 46.

    Stuhr, M. et al. Variable thermal stress tolerance of the reef-associated symbiont-bearing foraminifera Amphistegina linked to differences in symbiont type. Coral Reefs 37, 811–824 (2018).

    ADS  Article  Google Scholar 

  • 47.

    Gross, O. Influence of temperature, oxygen and food availability on the migrational activity of bathyal benthic foraminifera: Evidence by microcosm experiments. Hydrobiologia 426, 123–137 (2000).

    Article  Google Scholar 

  • 48.

    Deldicq, N., Seuront, L., Langlet, D. & Bouchet, V. Assessing behavioural traits of benthic foraminifera: Implications for sediment mixing. Mar. Ecol. Prog. Ser. 643, 21–31 (2020).

    ADS  Article  Google Scholar 

  • 49.

    Seuront, L. & Bouchet, V. M. P. The devil lies in details: New insights into the behavioural ecology of intertidal foraminifera. J. Foramin. Res. 45, 390–401 (2015).

    Article  Google Scholar 

  • 50.

    van Dam, J. W., Negri, A. P., Mueller, J. F., Altenburger, R. & Uthicke, S. Additive pressures of elevated sea surface temperatures and herbicides on symbiont-bearing foraminifera. PLoS ONE 7, e33900 (2012).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 51.

    Sinutok, S., Hill, R., Kühl, M., Doblin, M. A. & Ralph, P. J. Ocean acidification and warming alter photosynthesis and calcification of the symbiont-bearing foraminifera Marginopora vertebralis. Mar. Biol. 161, 2143–2154 (2014).

    CAS  Article  Google Scholar 

  • 52.

    Alve, E. & Murray, J. W. Temporal variability in vertical distributions of live (stained) intertidal foraminifera, Southern England. J. Foramin. Res. 31, 12–24 (2001).

    Article  Google Scholar 

  • 53.

    Debenay, J.-P., Bicchi, E., Goubert, E. & Armynot-du-Châtelet, E. Spatio-temporal distribution of benthic foraminifera in relation to estuarine dynamics (Vie estuary, Vendée, W France). Estuar. Coast. Shelf Sci. 67, 181–197 (2006).

    ADS  Article  Google Scholar 

  • 54.

    Morvan, J. et al. Patchiness and life cycle of intertidal foraminifera: Implication for environmental and paleoenvironmental interpretation. Mar. Micropaleontol. 61, 131–154 (2006).

    ADS  Article  Google Scholar 

  • 55.

    Francescangeli, F. et al. Multidisciplinary study to monitor consequences of pollution on intertidal benthic ecosystems (Hauts de France, English Channel, France): Comparison with natural areas. Mar. Environ. Res. 160, 105034 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 56.

    Amara, R., Meziane, T., Gilliers, C., Hermel, G. & Laffargues, P. Growth and condition indices in juveniles sole Solea solea measured to assess the quality of essential fish habitat. Mar. Ecol. Prog. Ser. 351, 201–208 (2007).

    ADS  Article  Google Scholar 

  • 57.

    Langlet, D., Bouchet, V. M. P., Delaeter, C. & Seuront, L. Motion behavior and metabolic response to microplastic leachates in the benthic foraminifera Haynesina germanica. J. Exp. Mar. Biol. Ecol. 529, 151395 (2020).

    Article  Google Scholar 

  • 58.

    Cesbron, F. et al. Sequestered chloroplasts in the benthic foraminifer Haynesina germanica: Cellular organization, oxygen fluxes and potential ecological implications. J. Foramin. Res. 47, 268–278 (2017).

    Article  Google Scholar 

  • 59.

    Geslin, E. et al. Oxygen respiration rates of benthic foraminifera as measured with oxygen microsensors. J. Exp. Mar. Biol. Ecol. 396, 108–114 (2011).

    Article  Google Scholar 

  • 60.

    Schindelin, J. et al. Fiji : An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Seuront, L. Fractals and Multifractals in Ecology and Aquatic Science (CRC Press, Boca Raton, 2010).

    Google Scholar 

  • 62.

    Seuront, L. On uses, misuses and potential abuses of fractal analysis in zooplankton behavioral studies: A review, a critique and a few recommendations. Phys. A 432, 410–434 (2015).

    MathSciNet  MATH  Article  Google Scholar 

  • 63.

    Seuront, L. & Cribb, N. Fractal analysis provides new insights into the complexity of marine mammal behavior: A review, two methods, their application to diving and surfacing patterns, and their relevance to marine mammal welfare assessment. Mar. Mamm. Sci. 33, 847–879 (2017).

    Article  Google Scholar 

  • 64.

    Revsbech, N. P. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34, 474–478 (1989).

    ADS  CAS  Article  Google Scholar 

  • 65.

    Glock, N. et al. Metabolic preference of nitrate over oxygen as an electron acceptor in foraminifera from the Peruvian oxygen minimum zone. PNAS 116, 2860–2865 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 66.

    Choquel, C. et al. Denitrification by benthic foraminifera and their contribution to N-loss from a fjord environment. Biogeosciences 18, 327–341 (2021).

    ADS  Article  Google Scholar 

  • 67.

    Ramsing, N. & Gundersen, J. Seawater and Gases-Tabulated Physical Parameters of Interest to People Working with Microsensors in Marine Systems. (Unisense Internal Report, 1994).

  • 68.

    Zar, J. Biostatistical Analysis 5th edn. (Pearson Education, London, 2009).

    Google Scholar 

  • 69.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2019).

  • 70.

    Bouchet, V. M. P. & Seuront, L. Strength may lie in numbers: Intertidal foraminifera non-negligible contribution to surface sediment reworking. OJMS 10, 131–140 (2020).

    Article  Google Scholar 

  • 71.

    Seuront, L. Behavioral fractality in marine copepods: Endogenous rhythms versus exogenous stressors. Phys. A 390, 250–256 (2011).

    Article  Google Scholar 

  • 72.

    Seuront, L. Hydrocarbon contamination decreases mating success in a marine planktonic copepod. PLoS ONE 6, e26283 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 73.

    Seuront, L. When complexity rimes with sanity: Loss of fractal and multifractal behavioural complexity as an indicator of sub-lethal contaminations in zooplankton. In Marine Productivity: Perturbation and Resilience of Socio-ecosystems (eds Ceccaldi, H.-J. et al.) 129–137 (Springer, Berlin, 2015).

    Google Scholar 

  • 74.

    Harrison, S. & Phizacklea, A. Vertical temperature gradient in muddy intertidal sediments in the Forth estuary, Scotland. Limnol. Oceanogr. 32, 954–963 (1987).

    ADS  Article  Google Scholar 

  • 75.

    Bouchet, V. M. P., Debenay, J.-P., Sauriau, P.-G., Radford-Knoery, J. & Soletchnik, P. Effects of short-term environmental disturbances on living benthic foraminifera during the Pacific oyster summer mortality in the Marennes-Oléron Bay (France). Mar. Environ. Res. 64, 358–383 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 76.

    Somero, G. N. Thermal physiology and vertical zonation of intertidal animals: Optima, limits, and costs of living. Integr. Comp. Biol. 42, 780–789 (2002).

    PubMed  Article  Google Scholar 

  • 77.

    Stillman, J. H. Causes and consequences of thermal tolerance limits in rocky intertidal porcelain crabs, genus Petrolisthes. Integr. Comp. Biol. 42, 790–796 (2002).

    PubMed  Article  Google Scholar 

  • 78.

    Pörtner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine Antarctic ectotherms: An integrative view. Phil. Trans. R. Soc. B 362, 2233–2258 (2007).

    PubMed  Article  CAS  Google Scholar 

  • 79.

    Przeslawski, R., Zhu, Q. & Aller, R. Effects of abiotic stressors on infaunal burrowing and associated sediment characteristics. Mar. Ecol. Prog. Ser. 392, 33–42 (2009).

    ADS  CAS  Article  Google Scholar 

  • 80.

    Chapperon, C. & Seuront, L. Behavioral thermoregulation in a tropical gastropod: Links to climate change scenarios. Glob. Change Biol. 17, 1740–1749 (2011).

    ADS  Article  Google Scholar 

  • 81.

    Tsubokura, T., Goshima, S. & Nakao, S. Seasonal horizontal and vertical distribution patterns of the supralittoral amphipod Trinorchestia trinitatis in relation to environmental variables. J. Crust. Biol. 17, 674–686 (1997).

    Article  Google Scholar 

  • 82.

    Lardies, M. A., Clasing, E., Navarro, J. M. & Stead, R. A. Effects of environmental variables on burial depth of two infaunal bivalves inhabiting a tidal flat in southern Chile. J. Mar. Biol. Assoc. U.K. 81, 809–816 (2001).

    Article  Google Scholar 

  • 83.

    Diaz, J. A. & Cabezas-Diaz, S. Seasonal variation in the contribution of different behavioural mechanisms to lizard thermoregulation. Funct. Ecol. 18, 867–875 (2004).

    Article  Google Scholar 

  • 84.

    Lencioni, V. Survival strategies of freshwater insects in cold environments. J. Limnol. 63, 45–55 (2004).

    Article  Google Scholar 

  • 85.

    Dubois, Y., Blouin-Demers, G., Shipley, B. & Thomas, D. Thermoregulation and habitat selection in wood turtles Glyptemys insculpta: Chasing the sun slowly. J. Anim. Ecol. 78, 1023–1032 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 86.

    Chapperon, C. & Seuront, L. Keeping warm in the cold: On the thermal benefits of aggregation behaviour in an intertidal ectotherm. J. Therm. Biol. 37, 640–647 (2012).

    Article  Google Scholar 

  • 87.

    Koo, B. J., Kim, S.-H. & Hyun, J.-H. Feeding behavior of the ocypodid crab Macrophthalmus japonicus and its effects on oxygen-penetration depth and organic-matter removal in intertidal sediments. Estuar. Coast. Shelf Sci. 228, 106366 (2019).

    CAS  Article  Google Scholar 

  • 88.

    Gosling, E. Bivalve Molluscs Biology, Ecology and Culture (Blackwell Publishing Ltd, Oxford, 2004).

    Google Scholar 

  • 89.

    Verdelhos, T., Marques, J. C. & Anastácio, P. Behavioral and mortality responses of the bivalves Scrobicularia plana and Cerastoderma edule to temperature, as indicator of climate change’s potential impacts. Ecol. Ind. 58, 95–103 (2015).

    Article  Google Scholar 

  • 90.

    Angilletta, M. J. Looking for answers to questions about heat stress: Researchers are getting warmer. Funct. Ecol. 23, 231–232 (2009).

    Article  Google Scholar 

  • 91.

    Lombard, F., Labeyrie, L., Michel, E., Spero, H. J. & Lea, D. W. Modelling the temperature dependent growth rates of planktic foraminifera. Mar. Micropaleontol. 70, 1–7 (2009).

    ADS  Article  Google Scholar 

  • 92.

    Fraser, K. P. P., Clarke, A. & Peck, L. S. Low-temperature protein metabolism: Seasonal changes in protein synthesis and RNA dynamics in the Antarctic limpet Nacella concinna Strebel 1908. J. Exp. Biol. 205, 3077–3086 (2002).

    CAS  PubMed  Google Scholar 

  • 93.

    Gilbert, C. et al. One for all and all for one: The energetic benefits of huddling in endotherms. Biol. Rev. 85, 545–569 (2010).

    PubMed  Google Scholar 

  • 94.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    ADS  Article  Google Scholar 

  • 95.

    Lou, F., Gao, T. & Han, Z. Transcriptome analyses reveal alterations in muscle metabolism, immune responses and reproductive behavior of Japanese mantis shrimp (Oratosquilla oratoria) at different cold temperature. Comp. Biochem. Physiol. D Genomics Proteomics 32, 100615 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 96.

    Wieser, W. Temperature relations of ectotherms: A speculative review. In Effects of Temperature on Ectothermic Organisms: Ecological Implications and Mechanisms of Compensation (ed. Wieser, W.) 1–23 (Springer, Berlin, 1973).

    Google Scholar 

  • 97.

    Price, R. & Warwick, R. M. The effect of temperature on the respiration rate of meiofauna. Oecologia 44, 145–148 (1980).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 98.

    Stillman, J. H. & Somero, G. N. A comparative analysis of the upper thermal tolerance limits of Eastern Pacific porcelain crabs, genus Petrolisthes : Influences of latitude, vertical zonation, acclimation, and phylogeny. Physiol. Biochem. Zool. 73, 200–208 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 99.

    Vernberg, W. & Vernberg, F. Environmental Physiology of Marine Organisms (Springer, Berlin, 1972).

    Google Scholar 

  • 100.

    Mestre, N. C., Brown, A. & Thatje, S. Temperature and pressure tolerance of larvae of Crepidula fornicata suggest thermal limitation of bathymetric range. Mar. Biol. 160, 743–750 (2013).

    Article  Google Scholar 

  • 101.

    Meysman, F. J. R., Galaktionov, O. S., Glud, R. N. & Middelburg, J. J. Oxygen penetration around burrows and roots in aquatic sediments. J. Mar. Res. 68, 309–336 (2010).

    CAS  Article  Google Scholar 

  • 102.

    Mouret, A. et al. Oxygen and organic carbon fluxes in sediments of the Bay of Biscay. Deep-Sea Res. I(57), 528–540 (2010).

    Article  CAS  Google Scholar 

  • 103.

    Bernhard, J. M. Experimental and field evidence of Antarctic foraminiferal tolerance to anoxia and hydrogen sulfide. Mar. Micropaleontol. 20, 203–213 (1993).

    ADS  Article  Google Scholar 

  • 104.

    Maire, O. et al. How does macrofaunal bioturbation influence the vertical distribution of living benthic foraminifera?. Mar. Ecol. Prog. Ser. 561, 83–97 (2016).

    ADS  Article  Google Scholar 

  • 105.

    Richirt, J. et al. Foraminiferal community response to seasonal anoxia in Lake Grevelingen (the Netherlands). Biogeosciences 17, 1415–1435 (2020).

    ADS  Article  Google Scholar 

  • 106.

    Moens, T. & Vincx, M. Temperature, salinity and food thresholds in two brackish-water bacterivorous nematode species: Assessing niches from food absorption and respiration experiments. J. Exp. Mar. Biol. Ecol. 243, 137–154 (2000).

    Article  Google Scholar 

  • 107.

    Pinko, D., Abramovich, S. & Titelboim, D. Foraminiferal holobiont thermal tolerance under climate change—Roommates problems or successful collaboration?. Biogeosciences 17, 2341–2348 (2020).

    ADS  Article  Google Scholar 

  • 108.

    Maire, O., Duchêne, J., Bigot, L. & Grémare, A. Linking feeding activity and sediment reworking in the deposit-feeding bivalve Abra ovata with image analysis, laser telemetry, and luminophore tracers. Mar. Ecol. Prog. Ser. 351, 139–150 (2007).

    ADS  Article  Google Scholar 

  • 109.

    Ouellette, D. et al. Effects of temperature on in vitro sediment reworking processes by a gallery biodiffusor, the polychaete Neanthes virens. Mar. Ecol. Prog. Ser. 266, 185–193 (2004).

    ADS  Article  Google Scholar 

  • 110.

    Guarini, J., Blanchard, G., Gros, P., Gouleau, D. & Bacher, C. Dynamic model of the short-term variability of microphytobenthic biomass on temperate intertidal mudflats. Mar. Ecol. Prog. Ser. 195, 291–303 (2000).

    ADS  Article  Google Scholar 

  • 111.

    Jauffrais, T. et al. Effect of light on photosynthetic efficiency of sequestered chloroplasts in intertidal benthic foraminifera (Haynesina germanica and Ammonia tepida). Biogeosciences 13, 2715–2726 (2016).

    ADS  Article  Google Scholar 

  • 112.

    Jauffrais, T. et al. Response of a kleptoplastidic foraminifer to heterotrophic starvation: Photosynthesis and lipid droplet biogenesis. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiz046 (2019).

    Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Meet the research scientists behind MITEI’s Electric Power Systems Center

    Lifestyle of sponge symbiont phages by host prediction and correlative microscopy