in

Effects of wood ash and N fertilization on soil chemical properties and growth of Zelkova serrata across soil types

  • 1.

    Müller, A. et al. The Role of Biomass in the Sustainable Development Goals: A Reality Check and Governance Implications. (Institue for Advances Sustainability Studies, 2015).

  • 2.

    Keesstra, S. et al. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 7, 133 (2018).

    Article 

    Google Scholar 

  • 3.

    Li, X., Rubæk, G. H. & Sørensen, P. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes. Sci. Total Environ. 557–558, 851–860 (2016).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 4.

    Hannam, K. D., Deschamps, C., Kwiaton, M., Venier, L. & Hazlett, P. W. Regulations and Guidelines for the Use of Wood Ash as a Soil Amendment in Canadian Forests (Natural Resources Canada Canadian Forest Service, 2016).

  • 5.

    Nieminen, M., Laiho, R., Sarkkola, S. & Penttilä, T. Whole-tree, stem-only, and stump harvesting impacts on site nutrient capital of a Norway spruce-dominated peatland forest. Eur. J. For. Res. 135, 531–538 (2016).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Adams, M., Burger, J., Jenkins, A. & Zelazny, L. Impact of harvesting and atmospheric pollution on nutrient depletion of eastern US hardwood forests. For. Ecol. Manag. 138, 301–319 (2000).

    Article 

    Google Scholar 

  • 7.

    Ågren, A., Buffam, I., Bishop, K. & Laudon, H. Sensitivity of pH in a boreal stream network to a potential decrease in base cations caused by forest harvest. Can. J. Fish. Aquat. Sci. 67, 1116–1125 (2010).

    Article 
    CAS 

    Google Scholar 

  • 8.

    Jerabkova, L., Prescott, C. E., Titus, B. D., Hope, G. D. & Walters, M. B. A meta-analysis of the effects of clearcut and variable-retention harvesting on soil nitrogen fluxes in boreal and temperate forests. Can. J. For. Res. 41, 1852–1870 (2011).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Cronan, C. S. & Grigal, D. F. Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. J. Environ. Qual. 24, 209–226 (1995).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Augusto, L., Bakker, M. R. & Meredieu, C. Wood ash applications to temperate forest ecosystems—Potential benefits and drawbacks. Plant Soil 306, 181–198 (2008).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Pitman, R. M. Wood ash use in forestry—A review of the environmental impacts. Forestry 79, 563–588 (2006).

    Article 

    Google Scholar 

  • 12.

    Pugliese, S. et al. Wood ash as a forest soil amendment: The role of boiler and soil type on soil property response. Can. J. Soil Sci. 94, 621–634 (2014).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Saarsalmi, A., Mälkönen, E. & Kukkola, M. Effect of wood ash fertilization on soil chemical properties and stand nutrient status and growth of some coniferous stands in Finland. Scand. J. For. Res. 19, 217–233 (2004).

    Article 

    Google Scholar 

  • 14.

    Zimmermann, S. & Frey, B. Soil respiration and microbial properties in an acid forest soil: Effects of wood ash. Soil Biol. Biochem. 34, 1727–1737 (2002).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Perkiömäki, J. & Fritze, H. Short and long-term effects of wood ash on the boreal forest humus microbial community. Soil Biol. Biochem. 34, 1343–1353 (2002).

    Article 

    Google Scholar 

  • 16.

    Etiégni, L. & Campbell, A. G. Physical and chemical characteristics of wood ash. Bioresour. Technol. 37, 173–178 (1991).

    Article 

    Google Scholar 

  • 17.

    Saarsalmi, A., Smolander, A., Kukkola, M. & Arola, M. Effect of wood ash and nitrogen fertilization on soil chemical properties, soil microbial processes, and stand growth in two coniferous stands in Finland. Plant Soil 331, 329–340 (2010).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Saarsalmi, A. & Levula, T. Wood ash application and liming: Effects on soil chemical properties and growth of Scots pine transplants. Balt. For. 13, 149–157 (2007).

    Google Scholar 

  • 19.

    Demeyer, A., Voundi Nkana, J. & Verloo, M. Characteristics of wood ash and influence on soil properties and nutrient uptake: An overview. Bioresour. Technol. 77, 287–295 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Zhou, H. Reducing, reusing and recycling solid wastes from wood fibre processing. In Towards Sustainable Management of the Boreal Forest (eds Burton, P. J. et al.) 759–798 (NRC Research Press, 2003) https://doi.org/10.1139/9780660187624.

    Chapter 

    Google Scholar 

  • 21.

    Rosenberg, O., Persson, T., Högbom, L. & Jacobson, S. Effects of wood-ash application on potential carbon and nitrogen mineralisation at two forest sites with different tree species, climate and N status. For. Ecol. Manag. 260, 511–518 (2010).

    Article 

    Google Scholar 

  • 22.

    Saarsalmi, A., Smolander, A., Kukkola, M., Moilanen, M. & Saramäki, J. 30-Year effects of wood ash and nitrogen fertilization on soil chemical properties, soil microbial processes and stand growth in a Scots pine stand. For. Ecol. Manag. 278, 63–70 (2012).

    Article 

    Google Scholar 

  • 23.

    McDonald, M. A., Hawkins, B. J., Prescott, C. E. & Kimmins, J. P. Growth and foliar nutrition of western red cedar fertilized with sewage sludge, pulp sludge, fish silage, and wood ash on northern Vancouver Island. Can. J. For. Res. 24, 297–301 (1994).

    Article 

    Google Scholar 

  • 24.

    Park, B. B., Yanai, R. D., Sahm, J. M., Lee, D. K. & Abrahamson, L. P. Wood ash effects on plant and soil in a willow bioenergy plantation. Biomass Bioenergy. 28, 355–365 (2005).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47, 151–163 (1996).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Nohrstedt, H. -Ö. Response of coniferous forest ecosystems on mineral soils to nutrient additions: A review of Swedish experiences. Scand. J. For. Res. 16, 555–573 (2001).

    Article 

    Google Scholar 

  • 27.

    Rennenberg, H. & Dannenmann, M. Nitrogen nutrition of trees in temperate forests—The significance of nitrogen availability in the pedosphere and atmosphere. Forests 6, 2820–2835 (2015).

    Article 

    Google Scholar 

  • 28.

    Solla-Gullón, F., Santalla, M., Pérez-Cruzado, C., Merino, A. & Rodríguez-Soalleiro, R. Response of Pinus radiata seedlings to application of mixed wood-bark ash at planting in a temperate region: Nutrition and growth. For. Ecol. Manag. 255, 3873–3884 (2008).

    Article 

    Google Scholar 

  • 29.

    Saarsalmi, A., Kukkola, M., Moilanen, M. & Arola, M. Long-term effects of ash and N fertilization on stand growth, tree nutrient status and soil chemistry in a Scots pine stand. For. Ecol. Manag. 235, 116–128 (2006).

    Article 

    Google Scholar 

  • 30.

    Ohno, T. Neutralization of soil acidity and release of phosphorus and potassium by wood ash. J. Environ. Qual. 21, 433–438 (1992).

    Article 

    Google Scholar 

  • 31.

    Bang-Andreasen, T. et al. Wood ash induced pH changes strongly affect soil bacterial numbers and community composition. Front. Microbiol. 8, 1400 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Clapham, W. M. & Zibilske, L. M. Wood ash as a liming amendment. Commun. Soil Sci. Plant Anal. 23, 1209–1227 (1992).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Ulery, A. L., Graham, R. C. & Amrhein, C. Wood-ash composition and soil pH following intense burning. Soil Sci. 156, 358–364 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Muse, J. K. & Mitchell, C. C. Paper mill boiler ash and lime by-products as soil liming materials. Agron. J. 87, 432–438 (1995).

    Article 

    Google Scholar 

  • 35.

    Bramryd, T. & Fransman, B. Silvicultural use of wood ashes – Effects on the nutrient and heavy metal balance in a pine (Pinus sylvestris, L) forest soil. Water Air Soil Pollut. 85, 1039–1044 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Jones, D. L. & Quilliam, R. S. Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application. J. Hazard. Mater. 276, 362–370 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Kim, K.-D. Species alterations caused by nitrogen and carbon addition in nutrient-deficient municipal waste landfills. J. Ecol. Environ. 30, 161–170 (2007).

    Article 

    Google Scholar 

  • 38.

    Jacobson, S. Addition of stabilized wood ashes to Swedish coniferous stands on mineral soils—Effects on stem growth and needle nutrient concentrations. Silva Fenn. 37, 437–450 (2003).

    Article 

    Google Scholar 

  • 39.

    Hånell, B. & Magnusson, T. An evaluation of land suitability for forest fertilization with biofuel ash on organic soils in Sweden. For. Ecol. Manag. 209, 43–55 (2005).

    Article 

    Google Scholar 

  • 40.

    Hannam, K. D. et al. Wood ash as a soil amendment in Canadian forests: What are the barriers to utilization?. Can. J. For. Res. 48, 442–450 (2018).

    Article 

    Google Scholar 

  • 41.

    Woods, S. W. & Balfour, V. N. The effect of ash on runoff and erosion after a severe forest wildfire, Montana, USA. Int. J. Wildl. Fire 17, 535–548 (2008).

    Article 

    Google Scholar 

  • 42.

    Someshwar, A. Wood and combination wood-fired boiler ash characterization. J. Environ. Qual. 25, 962–972 (1996).

    CAS 
    Article 

    Google Scholar 

  • 43.

    National Institute of Agricultural Science and Technology. Methods of Soil and Plant Analysis (ed. Im, J.-N.) 202 (National Institute of Agricultural Science and Technology, RDA, 2000).

  • 44.

    Sparks, D. L., Page, A. L., Helmke, P. A. & Leoppert, R. H. Methods of Soil Analysis Part3—Chemical Methods, SSSA Book Ser. 5.3. (Soil Science Society of America, American Society of Agronomy, 1996) https://doi.org/10.2136/sssabookser5.3.

  • 45.

    Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 46.

    Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis Part3—Chemical Methods, SSSA Book Ser. 5.3 (eds Sparks, D. L. et al.) 961–1010 (Soil Science Society of America, American Society of Agronomy, 1996) https://doi.org/10.2136/sssabookser5.3.c34.

    Chapter 

    Google Scholar 

  • 47.

    Bremner, J. M. Nitrogen-total. In Methods of Soil Analysis Part 3—Chemical Methods, SSSA Book Ser. 5.3 (eds Sparks, D. L. et al.) 1085–1121 (Soil Science Society of America, American Society of Agronomy, 1996) https://doi.org/10.2136/sssabookser5.3.c37.

    Chapter 

    Google Scholar 

  • 48.

    Kuo, S. Phosphorus. In Methods of Soil Analysis Part 3—Chemical Methods, SSSA Book Ser. 5.3 (eds Sparks, D. L. et al.) 869–919 (Soil Science Society of America, American Society of Agronomy, 1996) https://doi.org/10.2136/sssabookser5.3.c32.

    Chapter 

    Google Scholar 

  • 49.

    Cox, M. S. The Lancaster soil test method as an alternative to the Mehlich 3 soil test method1. Soil Sci. 166, 484–489 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 50.

    Sumner, M. E. & Miller, W. P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis Part 3—Chemical Methods, SSSA Book Ser. 5.3 (eds Sparks, D. L. et al.) 1201–1229 (Soil Science Society of America, American Society of Agronomy, 1996).

    Google Scholar 


  • Source: Ecology - nature.com

    Mechanisms and heterogeneity of in situ mineral processing by the marine nitrogen fixer Trichodesmium revealed by single-colony metaproteomics

    Long term relationship between farming damselfish, predators, competitors and benthic habitat on coral reefs of Moorea Island