Tracy, C. R. & Christian, K. A. Ecological relations among space, time, and thermal niche axes. Ecology 67, 609–615 (1986).
Peterson, A. T., Soberon, J. & Sanchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).
Hirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83, 2017–2036 (2002).
Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Rev. Ecol. Evol. Syst. 48, 183–206 (2017).
Wright, J. W., Davies, K. F., Lau, J. A., McCall, A. C. & McKay, J. K. Experimental verification of ecological niche modelling in a heterogeneous environment. Ecology 87, 2433–2439 (2006).
Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324 (2015).
Grubb, P. J. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52, 107–145 (1977).
Herrel, A., Spithoven, L., Van Damme, V. & De Vree, F. Sexual dimorphism of head size in Gallotia galloti: testing the divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–297 (1999).
Mouillot, D. et al. Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia 145, 345–353 (2005).
Kraft, N., Valencia, R. & Ackerly, D. D. Functional traits and niche based tree community assembly in an Amazonian forest. Science 322, 580–582 (2008).
Peñuelas, J., Sardans, J., Ogaya, R. & Estiarte, M. Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: effect of simulated climate change. Pol. J. Ecol. 56, 613–622 (2008).
Peñuelas, J. et al. Faster returns on “leaf economics” and different biogeochemical niche in invasive compared with native plant species. Glob. Change Biol. 16, 2171–2185 (2010).
Peñuelas, J. et al. The bioelements, the elementome and the “biogeochemical niche”. Ecology 100, e02652 (2019).
Sardans, J. et al. Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain. Persp. Plant Ecol. Evol. Syst. 18, 52–69 (2016).
Sardans, J. et al. Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions. Glob. Ecol. Biogeogr. 24, 240–255 (2015).
Urbina, I. et al. Shifts in the elemental composition of plants during a very severe drought. Environ. Exp. Bot. 111, 63–73 (2015).
Urbina, I. et al. Plant community composition affects the species biogeochemical niche. Ecosphere 8, e01801 (2017).
White, P. J. et al. Testing distinctness of shoot ionomes of angiosperm families using the Rothamsted Park grass continuous hay experiment. N. Phytol. 196, 101–109 (2012).
Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 168, E103–E122 (2006).
Sun, L. K. et al. Leaf elemental stoichiometry of Tamarix Lour. Species in relation to geographic, climatic, soil, and genetic components in China. Ecol. Eng. 106, 448–457 (2017).
Neugebauer, K. et al. Variation in the angiosperm ionome. Physiol. Plant. 163, 306–322 (2018).
Gillman, L. N., Keeling, D. J., Gardner, R. C. & Wright, S. D. Faster evolution of highly conserved in tropical plants. J. Evol. Biol. 23, 1327–1330 (2010).
Puurtinen, M. et al. Temperature-dependent mutational robustness can explain faster molecular evolution at warm temperatires, affecting speciation rate and global patterns of species diversity. Ecography 39, 1025–1033 (2016).
Kellner, A., Ritz, C. M., Schlittenhaedt, P. & Hellwig, F. H. Genetic differentiation in the genus Lithops L. (Ruschoideae, Aizoaceae) reveals a high level of convergent evolution and reflects geographic distribution. Plant Biol. 13, 368–380 (2011).
Jwa, N. S. & Hwang, B. K. Convergent evolution of pathogen effectors toward reactive oxygen species signaling networks in plants. Front. Plant Sci. 8, 1687 (2017).
Molina-Montenegro, M. A. et al. Is the success of plant invasions the result of rapid adaptive evolution in seed traits? Evidence from a latitudinal rainfall gradient. Front. Plant Sci. 9, 208 (2018).
Anacker, B. L. & Strauss, S. Y. Ecological similarity is related to phylogenetic distance between species in a cross-niche field transplant experiment. Ecology 97, 1807–1818 (2016).
Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl Acad. Sci. USA 101, 11001–11106 (2004).
Ordoñez, J. C. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).
Kerkhoff, A. J., Enquist, B. J., Elser, J. J. & Fagan, W. F. Plantallometry, stoichiometry and the temperature-dependence of primary productivity. Glob. Ecol. Biogeogr. 14, 585–598 (2005).
Yuan, Z. Y. & Chen, H. Y. H. Global trends in senesced-leaf nitrogen and phosphorus. Glob. Ecol. Biogeogr. 18, 532–542 (2009).
Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).
McGroddy, M. E., Daufresne, T. & Hedin, L. O. Scaling of C/N/P stoichiometry in forest worldwide: implications of terrestrial Redfield-type ratios. Ecology 85, 2390–2401 (2004).
Townsend, A. R., Cleveland, C. C., Asner, G. P. & Bustamante, M. M. C. Controls over foliar N:P ratios in tropical rainforest. Ecology 88, 107–118 (2007).
Lovelock, C. E., Feller, I. C., Ball, M. C., Ellis, J. & Sorell, B. Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients. Ecol. Lett. 10, 1154–1163 (2007).
Marschner, H. Mineral Nutrition of Higher Plants (Academic Press, 1995).
Zhang, Y. et al. Log-term trends in total inorganic nitrogen and sulfur deposition in US from 1990 to 2010. Atmos. Chem. Phys. 18, 9091–9106 (2018).
Horn, K. J. et al. Growth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous U.S. PLoS ONE 14, e0212984 (2019).
Papanikolaou, N., Britton, A. J., Helliwell, R. C. & Johnson, D. Nitrogen deposition, vegetation burning and climate warming act independently on microbial community structure and enzyme activity associated with decomposing litter in low-alpine heath. Glob. Change Biol. 16, 3120–3132 (2010).
Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. N. Phytol. 193, 696–704 (2012).
Sardans, J. et al. Foliar and soil concentrations and stoichiometry of nitrogen and phosphorus across European Pinus sylvestris forests: relationships with climate, N deposition and tree growth. Funct. Ecol. 30, 676–689 (2016).
Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).
Penuelas, J. et al. Increasing atmospheric CO2 concentrations correlate with declining nutritional status of European forests. Commun. Biol. 3, 125 (2020).
Ahmad, N. & Mermut, A. Vertisols and Technologies for their Development 1st edn, Vol. 24 (Elsevier, 1996).
Nishiue, A., Nanzyo, M., Kanno, H. & Takahashi, T. Properties and classification of volcanic ash soils around Lake Kuwanuma on the eastern footslope of Mt. Funagata in Miyagi prefecture, northeastern Japan. Soil Sci. Plant Nutr. 60, 848–862 (2014).
De la Riva, E. G. et al. Biogeochemical and ecomorphological niche segregation of Mediterranean woody species along a local gradient. Fron. Plant Sci. 8, 1242 (2017).
Yu, Q. et al. Stoichiometry homeostasis of vascular plants in the inner Mongolia grassland. Oecologia 166, 1–10 (2011).
Sardans, J., Albert Rivas-Ubach, A. & Peñuelas, J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review. Biogeochemistry 111, 1–39 (2012).
Gracia, C., Burriel, J. A., Ibàñez, J. J., Mata, T. & Vayreda, J. Inventari ecològic i forestal de Catalunya: regió forestal V (CREAF, 2004).
Fick, A. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Lang, R. Verwitterung und Bodenbildung als Einfuehrung in die Bodenkunde (Schweizerbart Science Publishers, 1920).
Köppen, W. Klassification der Klimate nach Tempertur, Niederschlag and Jahreslauf. Petermanns Geog. Mitt. 64, 243–248 (1918).
De Martonne, E. Nouvelle carte mondiale de l’indece d’aridité. Ann. Géogr. 51, 242–250 (1942).
Emberger, L. La vegetation de la región Mèditerranéenne, essai d’une classification des groupements vegetaux. Rev. Gén. Bot. 42, 641–662, 705–721 (1930).
Vorösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).
R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2011).
Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies, and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).
Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).
Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).
Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).
Revell, L. J. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4, 754–759 (2013).
Raamsdonk, L. M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19, 45–50 (2001).
Hadfield, J. D. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 2 (2010).
Source: Ecology - nature.com