in

Experimental warming increases ecosystem respiration by increasing above-ground respiration in alpine meadows of Western Himalaya

  • 1.

    IPCC Climate Change 2013 In The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge University Press, Cambridge, 2013).

    Google Scholar 

  • 2.

    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).

    ADS  Article  Google Scholar 

  • 3.

    Chen, H. & Tian, H. Q. Does a general temperature-dependent Q10 model of soil respiration exist at biome and global scale?. J. Integr. Plant Biol. 47, 1288–1302 (2005).

    Article  Google Scholar 

  • 4.

    Saito, M., Kato, T. & Tang, Y. Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Glob. Change Biol. 15, 221–228 (2009).

    ADS  Article  Google Scholar 

  • 5.

    Suh, S., Lee, E. & Lee, J. Temperature and moisture sensitivities of CO2 efflux from lowland and alpine meadow soils. J. Plant Ecol. 2, 225–231 (2009).

    Article  Google Scholar 

  • 6.

    Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 7.

    Schindlbacher, A. et al. Temperature sensitivity of forest soil organic matter decomposition along two elevation gradients. J. Geophys. Res. 115, G03018  (2010).

    Google Scholar 

  • 8.

    Budge, K., Leifeld, J., Hiltbrunner, E. & Fuhrer, J. Alpine grassland soils contain large proportion of labile carbon but indicate long turnover times. Biogeosciences 8, 1911–1923 (2011).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Hashimoto, S. et al. Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 12, 4121–4132 (2015).

    ADS  Article  Google Scholar 

  • 10.

    Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry: An Analysis of Global Change (Academic Press, Cambridge, 2013).

    Google Scholar 

  • 11.

    Bekku, Y. S., Nakatsubo, T., Kume, A., Adachi, M. & Koizumi, H. Effect of warming on the temperature dependence of soil respiration rate in arctic, temperate and tropical soils. Appl. Soil Ecol. 22, 205–210 (2003).

    Article  Google Scholar 

  • 12.

    Lin, X. et al. Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan plateau. Agric. For. Meteorol. 151, 792–802 (2011).

    ADS  Article  Google Scholar 

  • 13.

    Fekete, I. et al. Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in a Central-European deciduous forest. Soil Biol. Biochem. 74, 106–114 (2014).

    CAS  Article  Google Scholar 

  • 14.

    Moyano, F. E., Kutsch, W. L. & Rebmann, C. Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agric. For. Meteorol. 148, 135–143 (2008).

    ADS  Article  Google Scholar 

  • 15.

    Acosta, M. et al. Soil surface CO2 efflux measurements in Norway spruce forests: Comparison between four different sites across Europe—from boreal to alpine forest. Geoderma 192, 295–303 (2013).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Roland, M. et al. Importance of nondiffusive transport for soil CO 2 efflux in a temperate mountain grassland. J. Geophys. Res. Biogeosci. 120, 502–512 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Niu, S., Sherry, R. A., Zhou, X. & Luo, Y. Ecosystem carbon fluxes in response to warming and clipping in a Tallgrass Prairie. Ecosystems 16, 948–961 (2013).

    CAS  Article  Google Scholar 

  • 18.

    Kato, T. Seasonal patterns of gross primary production and ecosystem respiration in an alpine meadow ecosystem on the Qinghai-Tibetan Plateau. J. Geophys. Res. 109, D12109 (2004).

    ADS  Article  CAS  Google Scholar 

  • 19.

    Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 20.

    Li, Y. et al. Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification. Sci. Total Environ. 615, 1535–1546 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Wang, H. et al. Warm- and cold- season grazing affect soil respiration differently in alpine grasslands. Agric. Ecosyst. Environ. 248, 136–143 (2017).

    Article  Google Scholar 

  • 22.

    Peng, F. et al. Effects of experimental warming on soil respiration and its components in an alpine meadow in the permafrost region of the Qinghai-Tibet Plateau: Warming effects on soil respiration and its components. Eur. J. Soil Sci. 66, 145–154 (2015).

    CAS  Article  Google Scholar 

  • 23.

    Fang, C. et al. Seasonal responses of soil respiration to warming and nitrogen addition in a semi-arid alfalfa-pasture of the Loess Plateau, China. Sci. Total Environ. 590–591, 729–738 (2017).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 24.

    Feng, J. et al. Meta-analyses of the effects of major global change drivers on soil respiration across China. Atmos. Environ. 150, 181–186 (2017).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Pries, H. C. E., Castanha, C., Porras, R. C. & Torn, M. S. The whole-soil carbon flux in response to warming. Science 355, 1420–1423 (2017).

    ADS  Article  CAS  Google Scholar 

  • 26.

    Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Li, X. et al. Grazing exclusion alters soil microbial respiration, root respiration and the soil carbon balance in grasslands of the Loess Plateau, northern China. Soil Sci. Plant Nutr. 59, 877–887 (2013).

    Article  Google Scholar 

  • 28.

    Reynolds, L. L., Johnson, B. R., Pfeifer-Meister, L. & Bridgham, S. D. Soil respiration response to climate change in Pacific Northwest prairies is mediated by a regional Mediterranean climate gradient. Glob. Change Biol. 21, 487–500 (2015).

    ADS  Article  Google Scholar 

  • 29.

    Chen, J. et al. Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agric. For. Meteorol. 220, 21–29 (2016).

    ADS  Article  Google Scholar 

  • 30.

    Xia, J., Niu, S. & Wan, S. Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Glob. Change Biol. 15, 1544–1556 (2009).

    ADS  Article  Google Scholar 

  • 31.

    Fu, G. et al. Experimental warming does not enhance gross primary production and above-ground biomass in the alpine meadow of Tibet. J. Appl. Remote Sens. 7, 73505 (2013).

    Article  Google Scholar 

  • 32.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 33.

    Exbrayat, J. F., Pitman, A. J., Zhang, Q., Abramowitz, G. & Wang, Y.-P. Examining soil carbon uncertainty in a global model: Response of microbial decomposition to temperature, moisture and nutrient limitation. Biogeosciences 10, 7095–7108 (2013).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Crowther, T. W. et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc. Natl. Acad. Sci. USA 112, 7033–7038 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 35.

    Bhattacharyya, T. et al. Soil carbon storage capacity as a tool to prioritize areas for carbon sequestration. Curr. Sci. 95, 482–494 (2008).

    CAS  Google Scholar 

  • 36.

    Rawat, G. S. Pastoral Practices, wild mammals and conservation status of alpine meadows in western Himalaya. J. Bombay Nat. Hist. Soc. 104, 5–11 (2007).

    Google Scholar 

  • 37.

    Rawat, G. S. & Adhikari, B. S. Floristics and distribution of plant communities across moisture and topographic gradients in Tso Kar Basin, Changthang Plateau, Eastern Ladakh. Arct. Antarct. Alp. Res. 37, 539–544 (2005).

    Article  Google Scholar 

  • 38.

    Körner, C. Climatic stress. In Alpine Plant Life 101–119 (Springer, Berlin Heidelberg, 1999).

    Google Scholar 

  • 39.

    Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Kohler, T. & Maselli, D. Mountains and Climate Change. From Understanding to Action (Bernensia, Bern, 2009).

    Google Scholar 

  • 41.

    Solomon, S., Manning, M., Marquis, M. & Qin, D. Climate change 2007-The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  • 42.

    Dash, S. K., Jenamani, R. K., Kalsi, S. R. & Panda, S. K. Some evidence of climate change in twentieth-century India. Clim. Change 85, 299–321 (2007).

    ADS  Article  Google Scholar 

  • 43.

    Bhattacharya, P., Talukdar, G., Rawat, G. S. & Mondol, S. Importance of monitoring soil microbial community responses to climate change in the Indian Himalayan region. Curr. Sci. 112, 1622 (2017).

    Article  Google Scholar 

  • 44.

    Chen, J. et al. Asymmetric diurnal and monthly responses of ecosystem carbon fluxes to experimental warming: General. Clean: Soil, Air, Water 45, 1600557 (2017).

    Google Scholar 

  • 45.

    Qin, Y., Yi, S., Chen, J., Ren, S. & Wang, X. Responses of ecosystem respiration to short-term experimental warming in the alpine meadow ecosystem of a permafrost site on the Qinghai-Tibetan Plateau. Cold Reg. Sci. Technol. 115, 77–84 (2015).

    Article  Google Scholar 

  • 46.

    Rice, K. E., Montgomery, R. A., Stefanski, A., Rich, R. L. & Reich, P. B. Experimental warming advances phenology of groundlayer plants at the boreal-temperate forest ecotone. Am. J. Bot. 105, 851–861 (2018).

    PubMed  Article  Google Scholar 

  • 47.

    Ma, Z., Zhao, W., Liu, M. & Liu, Q. Responses of soil respiration and its components to experimental warming in an alpine scrub ecosystem on the eastern Qinghai-Tibet Plateau. Sci. Total Environ. 643, 1427–1435 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 48.

    Gavrichkova, O. & Kuzyakov, Y. The above-belowground coupling of the C cycle: fast and slow mechanisms of C transfer for root and rhizomicrobial respiration. Plant Soil 410, 73–85 (2017).

    CAS  Article  Google Scholar 

  • 49.

    Bahn, M. et al. Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems 11, 1352–1367 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Hanson, P. J., Edwards, N. T., Garten, C. T. & Andrews, J. A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48, 115–146 (2000).

    CAS  Article  Google Scholar 

  • 51.

    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Change 8, 885–889 (2018).

    ADS  CAS  Article  Google Scholar 

  • 52.

    Song, B. et al. Light and heavy fractions of soil organic matter in response to climate warming and increased precipitation in a temperate steppe. PLoS ONE 7, e33217 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Curtin, D., Beare, M. H. & Hernandez-Ramirez, G. Temperature and moisture effects on microbial biomass and soil organic matter mineralization. Soil Sci. Soc. Am. J. 76, 2055–2067 (2012).

    ADS  CAS  Article  Google Scholar 

  • 54.

    Hartley, I. P., Hopkins, D. W., Garnett, M. H., Sommerkorn, M. & Wookey, P. A. Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol. Lett. 11, 1092–1100 (2008).

    PubMed  Article  Google Scholar 

  • 55.

    Kirschbaum, M. U. F. Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss?. Glob. Change Biol. 10, 1870–1877 (2004).

    ADS  Article  Google Scholar 

  • 56.

    Fei, P. et al. Different responses of soil respiration and its components to experimental warming with contrasting soil water content. Arct. Antarct. Alp. Res. 47, 359–368 (2015).

    Article  Google Scholar 

  • 57.

    Crowther, T. W. & Bradford, M. A. Thermal acclimation in widespread heterotrophic soil microbes. Ecol. Lett. 16, 469–477 (2013).

    PubMed  Article  Google Scholar 

  • 58.

    Yergeau, E. et al. Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. ISME J. 6, 692–702 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. & Vasander, H. Heterotrophic respiration in drained tropical peat is greatly affected by temperature—a passive ecosystem cooling experiment. Environ. Res. Lett. 9, 105013 (2014).

    ADS  Article  CAS  Google Scholar 

  • 60.

    Zhou, Y. et al. Experimental warming of a mountain tundra increases soil CO2 effluxes and enhances CH4 and N2O uptake at Changbai Mountain, China. Sci. Rep. 6, 1–8 (2016).

    Article  CAS  Google Scholar 

  • 61.

    Wang, X. et al. Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China. Soil Biol. Biochem. 76, 140–142 (2014).

    CAS  Article  Google Scholar 

  • 62.

    Carbone, M. S. et al. Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration. Oecologia 167, 265–278 (2011).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Vesterdal, L., Elberling, B., Christiansen, J. R., Callesen, I. & Schmidt, I. K. Soil respiration and rates of soil carbon turnover differ among six common European tree species. For. Ecol. Manag. 264, 185–196 (2012).

    Article  Google Scholar 

  • 64.

    Carbone, M. S., Winston, G. C. & Trumbore, S. E. Soil respiration in perennial grass and shrub ecosystems: Linking environmental controls with plant and microbial sources on seasonal and diel timescales. J. Geophys. Res. Biogeosci. 113, G02022 (2008).

    ADS  Google Scholar 

  • 65.

    Tjoelker, M. G., Oleksyn, J. & Reich, P. B. Modelling respiration of vegetation: Evidence for a general temperature-dependent Q10. Glob. Change Biol. 7, 223–230 (2001).

    ADS  Article  Google Scholar 

  • 66.

    Raich, J. W. & Potter, C. S. Global patterns of carbon dioxide emissions from soils. Glob. Biogeochem. Cycles 9, 23–36 (1995).

    ADS  CAS  Article  Google Scholar 

  • 67.

    Raich, J. W. & Schlesinger, W. H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B Chem. Phys. Meteorol. 44, 81–99 (1992).

    ADS  Article  Google Scholar 

  • 68.

    Lu, X., Fan, J., Yan, Y. & Wang, X. Responses of soil CO2 fluxes to short-term experimental warming in alpine steppe ecosystem, Northern Tibet. PLoS ONE 8, e59054 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Fouché, J., Keller, C., Allard, M. & Ambrosi, J. P. Diurnal evolution of the temperature sensitivity of CO2 efflux in permafrost soils under control and warm conditions. Sci. Total Environ. 581–582, 161–173 (2017).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 70.

    Sanyal, A. K., Uniyal, V. P., Chandra, K. & Bhardwaj, M. Diversity, distribution pattern and seasonal variation in moth assemblages along altitudinal gradient in Gangotri landscape area, Western Himalaya, Uttarakhand, India. J. Threat. Taxa 5, 3646–3653 (2013).

    Article  Google Scholar 

  • 71.

    Molau, U. & Alatalo, J. M. Responses of subarctic-alpine plant communities to simulated environmental change: Biodiversity of bryophytes, lichens, and vascular plants. Ambio 27, 322–329 (1998).

    Google Scholar 

  • 72.

    Marion, G. M. et al. Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob. Change Biol. 3, 20–32 (1997).

    Article  Google Scholar 

  • 73.

    Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).

    ADS  CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    MIT convenes influential industry leaders in the fight against climate change

    How will Covid-19 ultimately impact climate change?