Leroux, S. J. & Loreau, M. Subsidy hypothesis and strength of trophic cascades across ecosystems. Ecol. Lett. 11, 1147–1156 (2008).
Moore, J. C. et al. Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7, 584–600 (2004).
Nowlin, W. H., Vanni, M. J. & Yang, L. H. Comparing resource pulses in aquatic and terrestrial ecosystems. Ecology 89, 647–659 (2008).
Wilson, E. E. & Wolkovich, E. M. Scavenging: how carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).
Margalida, A., Donázar, J. A., Carrete, M. & Sánchez-Zapata, J. A. Sanitary versus environmental policies: fitting together two pieces of the puzzle of European vulture conservation. J. Appl. Ecol. 47, 931–935 (2010).
Margalida, A., Colomer, M. À. & Oro, D. Man-induced activities modify demographic parameters in a long-lived species: effects of poisoning and health policies. Ecol. Appl. 24, 436–444 (2014).
Moreno-Opo, R. & Margalida, A. Carcasses provide resources not exclusively to scavengers: patterns of carrion exploitation by passerine birds. Ecosphere 4, art105 (2013).
DeVault, T. L., Rhodes, O. E. Jr. & Shivik, J. A. Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).
Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013).
Bump, J. K. et al. Ungulate carcasses perforate ecological filters and create biogeochemical hotspots in forest herbaceous layers allowing trees a competitive advantage. Ecosystems 12, 996–1007 (2009).
Danell, K., Berteaux, D. & Bråthen, K. A. Effect of muskox carcasses on nitrogen concentration in tundra vegetation. Arctic 55, 389–392 (2002).
Klink, R., Laar-Wiersma, J., Vorst, O. & Smit, C. Rewilding with large herbivores: positive direct and delayed effects of carrion on plant and arthropod communities. PLoS ONE 15, e0226946 (2020).
Turner, W. C. et al. Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites. Proc. R. Soc. Lond. B Biol. Sci. 281, e20141785 (2014).
Mateo-Tomás, P. et al. From regional to global patterns in vertebrate scavenger communities subsidized by big game hunting. Divers. Distrib. 21, 913–924 (2015).
Markandya, A. et al. Counting the cost of vulture decline—an appraisal of the human health and other benefits of vultures in India. Ecol. Econ. 67, 194–204 (2008).
Selva, N., Jędrzejewska, B., Jędrzejewski, W. & Wajrak, A. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can. J. Zool. 83, 1590–1601 (2005).
DeVault, T. L., Brisbin, J., Lehr, I., Rhodes, J. & Olin, E. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).
Arrondo, E. et al. Rewilding traditional grazing areas affects scavenger assemblages and carcass consumption patterns. Basic Appl. Ecol. 41, 56–66 (2019).
Morales-Reyes, Z. et al. Scavenging efficiency and red fox abundance in Mediterranean mountains with and without vultures. Acta Oecologica 79, 81–88 (2017).
Ruzicka, R. E. & Conover, M. R. Does weather or site characteristics influence the ability of scavengers to locate food? Ethology 118, 187–196 (2012).
Moleón, M., Sánchez-Zapata, J., Sebastián-González, E. & Owen-Smith, N. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124, 1391–1403 (2015).
Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).
Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).
Sekercioglu, Ç. H., Wenny, D. G. & Whelan, C. J. Why Birds Matter: Avian Ecological Function and Ecosystem Services (University of Chicago Press, 2016).
Pereira, L. M., Owen-Smith, N. & Moleón, M. Facultative predation and scavenging by mammalian carnivores: seasonal, regional and intra-guild comparisons. Mammal Rev. 44, 44–55 (2014).
Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. R. Soc. B Biol. Sci. 274, 1101–1108 (2007).
Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4, 170052 (2017).
Grimm, N. B. et al. The impacts of climate change on ecosystem structure and function. Front. Ecol. Environ. 11, 474–482 (2013).
Lauenroth, W. et al. Potential effects of climate change on the temperate zones of North and South America. Rev. Chil. Hist. Nat. 77, 439–453 (2004).
Shanley, C. S. et al. Climate change implications in the northern coastal temperate rainforest of North America. Clim. Change 130, 155–170 (2015).
Wilmers, C. C. & Getz, W. M. Gray wolves as climate change buffers in yellowstone. PLOS Biol. 3, e92 (2005).
Sebastián-González, E. et al. Network structure of vertebrate scavenger assemblages at the global scale: drivers and ecosystem functioning implications. Ecography 43, 1143–1155 (2020).
Pardo-Barquín, E., Mateo-Tomás, P. & Olea, P. P. Habitat characteristics from local to landscape scales combine to shape vertebrate scavenging communities. Basic Appl. Ecol. 34, 126–139 (2019).
Sebastián-González, E. et al. Scavenging in the Anthropocene: human impact drives vertebrate scavenger species richness at a global scale. Glob. Change Biol. 25, 3005–3017 (2019).
Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).
Janßen, F., Treude, T. & Witte, U. Scavenger assemblages under differing trophic conditions: a case study in the deep Arabian Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 47, 2999–3026 (2000).
Houston, D. C. To the vultures belong the spoils. Nat. Hist. 103, 34–41 (1994).
Houston, D. C. Scavenging efficiency of turkey vultures in tropical forest. The Condor 88, 318–323 (1986).
Sauer, J. et al. The North American breeding bird survey, results and analysis 1966–2015. (2017).
Hill, J. E., DeVault, T. L., Beasley, J. C., Rhodes, O. E. & Belant, J. L. Effects of vulture exclusion on carrion consumption by facultative scavengers. Ecol. Evol. 8, 2518–2526 (2018).
Heinrich, B. Winter foraging at carcasses by three sympatric corvids, with emphasis on recruitment by the raven, Corvus corax. Behav. Ecol. Sociobiol. 23, 141–156 (1988).
Bellan, S. E., Turnbull, P. C. B., Beyer, W. & Getz, W. M. Effects of experimental exclusion of scavengers from carcasses of anthrax-infected herbivores on bacillus anthracis sporulation, survival, and distribution. Appl. Environ. Microbiol. 79, 3756–3761 (2013).
The IUCN Red List of Threatened Species. IUCN Red List of Threatened Species https://www.iucnredlist.org/en.
Kiff, L. F. The current status of North American vultures. In Raptors at Risk 175–189 (World Working Group on Birds of Prey/Hancock House, 2000).
Prasad, A. M., Iverson, L. R., Peters, M. P. & Matthews, S. N. Climate change tree atlas (Northern Research Station, US Forest Service, Delaware, OH, 2014).
Kiff, L. The current status of North American vultures. in 175–189 (2000).
Houston, D. C. Competition for food between Neotropical vultures in forest. Ibis 130, 402–417 (1988).
Gomez, L. G., Houston, D. C., Cotton, P. & Tye, A. The role of greater yellow-headed vultures Cathartes melambrotus as scavengers in neotropical forest. Ibis 136, 193–196 (1994).
Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, e1241484 (2014).
Tomberlin, J. K., Barton, B. T., Lashley, M. A. & Jordan, H. R. Mass mortality events and the role of necrophagous invertebrates. Curr. Opin. Insect Sci. 23, 7–12 (2017).
Fey, S. B. et al. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc. Natl. Acad. Sci. 112, 1083–1088 (2015).
Wikenros, C., Sand, H., Ahlqvist, P. & Liberg, O. Biomass flow and scavengers use of carcasses after re-colonization of an apex predator. PLoS ONE 8, e77373 (2013).
Kočárek, P. Decomposition and Coleoptera succession on exposed carrion of small mammal in Opava, the Czech Republic. Eur. J. Soil Biol. 39, 31–45 (2003).
Matuszewski, S., Bajerlein, D., Konwerski, S. & Szpila, K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 1: pattern and rate of decomposition. Forensic Sci. Int. 194, 85–93 (2010).
Reed, H. B. A study of dog carcass communities in tennessee, with special reference to the insects. Am. Midl. Nat. 59, 213–245 (1958).
Bauer, J. W., Logan, K. A., Sweanor, L. L. & Boyce, W. M. Scavenging behavior in Puma. Southwest. Nat. 50, 466–471 (2005).
Burkepile, D. E. et al. Chemically mediated competition between microbes and animals: microbes as consumers in food webs. Ecology 87, 2821–2831 (2006).
Janzen, D. H. Why fruits rot, seeds mold, and meat spoils. Am. Nat. 111, 691–713 (1977).
DeVault, T. L. & Rhodes, O. E. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. (Warsz.) 47, 185–192 (2002).
Parker, K. L., Robbins, C. T. & Hanley, T. A. Energy expenditures for locomotion by Mule Deer and Elk. J. Wildl. Manag. 48, 474–488 (1984).
Crête, M. & Larivière, S. Estimating the costs of locomotion in snow for coyotes. Can. J. Zool. 81, 1808–1814 (2003).
Droghini, A. & Boutin, S. The calm during the storm: snowfall events decrease the movement rates of grey wolves (Canis lupus). PLoS ONE 13, e0205742 (2018).
Green, G. I., Mattson, D. J. & Peek, J. M. Spring feeding on ungulate carcasses by grizzly bears in Yellowstone National Park. J. Wildl. Manag. 61, 1040–1055 (1997).
De Jong, G. D. & Chadwick, J. W. Decomposition and arthropod succession on exposed rabbit carrion during summer at high altitudes in colorado, USA. J. Med. Entomol. 36, 833–845 (1999).
Sun, S.-J. et al. Climate-mediated cooperation promotes niche expansion in burying beetles. Elife 3, e02440 (2014).
Krofel, M. Monitoring of facultative avian scavengers on large mammal carcasses in Dinaric forest of Slovenia. Acrocephalus 32, 45–51 (2011).
DeVault, T. L., Seamans, T. W., Linnell, K. E., Sparks, D. W. & Beasley, J. C. Scavenger removal of bird carcasses at simulated wind turbines: Does carcass type matter?. Ecosphere 8, e01994 (2017).
Turner, K. L., Conner, L. M. & Beasley, J. C. Effect of mammalian mesopredator exclusion on vertebrate scavenging communities. Sci. Rep. 10, 2644 (2020).
Abernethy, E. F., Turner, K. L., Beasley, J. C. & Rhodes, O. E. Scavenging along an ecological interface: utilization of amphibian and reptile carcasses around isolated wetlands. Ecosphere 8, e01989 (2017).
Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, (2016).
Ragg, J., Mackintosh, C. & Moller, H. The scavenging behaviour of ferrets (Mustela furo), feral cats (Felis domesticus), possums (Trichosurus vulpecula), hedgehogs (Erinaceus europaeus) and harrier hawks (Circus approximans) on pastoral farmland in New Zealand: Implications for bovine tuberculosis transmission. N. Z. Vet. J. 48, 166–175 (2001).
Laundré, J. W., Hernández, L. & Altendorf, K. B. Wolves, elk, and bison: reestablishing the” landscape of fear” in Yellowstone National Park, USA. Can. J. Zool. 79, 1401–1409 (2001).
Ripple, W. J. & Beschta, R. L. Linking wolves to willows via risk-sensitive foraging by ungulates in the northern Yellowstone ecosystem. For. Ecol. Manag. 230, 96–106 (2006).
Ripple, W. J. & Beschta, R. L. Trophic cascades in Yellowstone: the first 15 years after wolf reintroduction. Biol. Conserv. 145, 205–213 (2012).
Smith, D. W., Peterson, R. O. & Houston, D. B. Yellowstone after wolves. Bioscience 53, 330–340 (2003).
White, P. J. & Garrott, R. A. Northern Yellowstone elk after wolf restoration. Wildl. Soc. Bull. 33, 942–955 (2005).
Clark, P. J. & Evans, F. C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445–453 (1954).
Cook, R. C., Cook, J. G. & Irwin, L. L. Estimating elk body mass using chest-girth circumference. Wildl. Soc. Bull. 1973-2006 31, 536–543 (2003).
Craine, J. M., Towne, E. G. & Elmore, A. Intra-annual bison body mass trajectories in a tallgrass prairie. Mammal Res. 60, 263–270 (2015).
Lott, D. F. & Galland, J. C. Body mass as a factor influencing dominance status in American Bison Cows. J. Mammal. 68, 683–685 (1987).
Fox, J. & Weisberg, S. An R Companion to Applied Regression. (Sage Publications, 2018).
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).
Pan, Y. & Jackson, R. T. Ethnic difference in the relationship between acute inflammation and serum ferritin in US adult males. Epidemiol. Infect. 136, 421–431 (2008).
Brewer, M. J., Butler, A. & Cooksley, S. L. The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity. Methods Ecol. Evol. 679, 692. https://doi.org/10.1111/2041-210X.12541 (2016).
Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).
Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge University Press, Cambridge, 2010).
Kleiber, C. & Zeileis, A. Applied Econometrics with R (Springer, Berlin, 2008).
Cameron, A. C. & Trivedi, P. K. Regression-based tests for overdispersion in the Poisson model. J. Econom. 46, 347–364 (1990).
Source: Ecology - nature.com