in

Factors influencing scavenger guilds and scavenging efficiency in Southwestern Montana

  • 1.

    Leroux, S. J. & Loreau, M. Subsidy hypothesis and strength of trophic cascades across ecosystems. Ecol. Lett. 11, 1147–1156 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Moore, J. C. et al. Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7, 584–600 (2004).

    ADS  Article  Google Scholar 

  • 3.

    Nowlin, W. H., Vanni, M. J. & Yang, L. H. Comparing resource pulses in aquatic and terrestrial ecosystems. Ecology 89, 647–659 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Wilson, E. E. & Wolkovich, E. M. Scavenging: how carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Margalida, A., Donázar, J. A., Carrete, M. & Sánchez-Zapata, J. A. Sanitary versus environmental policies: fitting together two pieces of the puzzle of European vulture conservation. J. Appl. Ecol. 47, 931–935 (2010).

    Article  Google Scholar 

  • 6.

    Margalida, A., Colomer, M. À. & Oro, D. Man-induced activities modify demographic parameters in a long-lived species: effects of poisoning and health policies. Ecol. Appl. 24, 436–444 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Moreno-Opo, R. & Margalida, A. Carcasses provide resources not exclusively to scavengers: patterns of carrion exploitation by passerine birds. Ecosphere 4, art105 (2013).

  • 8.

    DeVault, T. L., Rhodes, O. E. Jr. & Shivik, J. A. Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).

    Article  Google Scholar 

  • 9.

    Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Bump, J. K. et al. Ungulate carcasses perforate ecological filters and create biogeochemical hotspots in forest herbaceous layers allowing trees a competitive advantage. Ecosystems 12, 996–1007 (2009).

    Article  Google Scholar 

  • 11.

    Danell, K., Berteaux, D. & Bråthen, K. A. Effect of muskox carcasses on nitrogen concentration in tundra vegetation. Arctic 55, 389–392 (2002).

    Article  Google Scholar 

  • 12.

    Klink, R., Laar-Wiersma, J., Vorst, O. & Smit, C. Rewilding with large herbivores: positive direct and delayed effects of carrion on plant and arthropod communities. PLoS ONE 15, e0226946 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Turner, W. C. et al. Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites. Proc. R. Soc. Lond. B Biol. Sci. 281, e20141785 (2014).

  • 14.

    Mateo-Tomás, P. et al. From regional to global patterns in vertebrate scavenger communities subsidized by big game hunting. Divers. Distrib. 21, 913–924 (2015).

    Article  Google Scholar 

  • 15.

    Markandya, A. et al. Counting the cost of vulture decline—an appraisal of the human health and other benefits of vultures in India. Ecol. Econ. 67, 194–204 (2008).

    Article  Google Scholar 

  • 16.

    Selva, N., Jędrzejewska, B., Jędrzejewski, W. & Wajrak, A. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can. J. Zool. 83, 1590–1601 (2005).

    Article  Google Scholar 

  • 17.

    DeVault, T. L., Brisbin, J., Lehr, I., Rhodes, J. & Olin, E. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).

    Article  Google Scholar 

  • 18.

    Arrondo, E. et al. Rewilding traditional grazing areas affects scavenger assemblages and carcass consumption patterns. Basic Appl. Ecol. 41, 56–66 (2019).

    Article  Google Scholar 

  • 19.

    Morales-Reyes, Z. et al. Scavenging efficiency and red fox abundance in Mediterranean mountains with and without vultures. Acta Oecologica 79, 81–88 (2017).

    ADS  Article  Google Scholar 

  • 20.

    Ruzicka, R. E. & Conover, M. R. Does weather or site characteristics influence the ability of scavengers to locate food? Ethology 118, 187–196 (2012).

    Article  Google Scholar 

  • 21.

    Moleón, M., Sánchez-Zapata, J., Sebastián-González, E. & Owen-Smith, N. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124, 1391–1403 (2015).

  • 22.

    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Sekercioglu, Ç. H., Wenny, D. G. & Whelan, C. J. Why Birds Matter: Avian Ecological Function and Ecosystem Services (University of Chicago Press, 2016).

  • 25.

    Pereira, L. M., Owen-Smith, N. & Moleón, M. Facultative predation and scavenging by mammalian carnivores: seasonal, regional and intra-guild comparisons. Mammal Rev. 44, 44–55 (2014).

    Article  Google Scholar 

  • 26.

    Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. R. Soc. B Biol. Sci. 274, 1101–1108 (2007).

    Article  Google Scholar 

  • 27.

    Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4, 170052 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Grimm, N. B. et al. The impacts of climate change on ecosystem structure and function. Front. Ecol. Environ. 11, 474–482 (2013).

    Article  Google Scholar 

  • 29.

    Lauenroth, W. et al. Potential effects of climate change on the temperate zones of North and South America. Rev. Chil. Hist. Nat. 77, 439–453 (2004).

    Article  Google Scholar 

  • 30.

    Shanley, C. S. et al. Climate change implications in the northern coastal temperate rainforest of North America. Clim. Change 130, 155–170 (2015).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Wilmers, C. C. & Getz, W. M. Gray wolves as climate change buffers in yellowstone. PLOS Biol. 3, e92 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 32.

    Sebastián-González, E. et al. Network structure of vertebrate scavenger assemblages at the global scale: drivers and ecosystem functioning implications. Ecography 43, 1143–1155 (2020).

    Article  Google Scholar 

  • 33.

    Pardo-Barquín, E., Mateo-Tomás, P. & Olea, P. P. Habitat characteristics from local to landscape scales combine to shape vertebrate scavenging communities. Basic Appl. Ecol. 34, 126–139 (2019).

    Article  Google Scholar 

  • 34.

    Sebastián-González, E. et al. Scavenging in the Anthropocene: human impact drives vertebrate scavenger species richness at a global scale. Glob. Change Biol. 25, 3005–3017 (2019).

    ADS  Article  Google Scholar 

  • 35.

    Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Janßen, F., Treude, T. & Witte, U. Scavenger assemblages under differing trophic conditions: a case study in the deep Arabian Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 47, 2999–3026 (2000).

    ADS  Article  Google Scholar 

  • 37.

    Houston, D. C. To the vultures belong the spoils. Nat. Hist. 103, 34–41 (1994).

    Google Scholar 

  • 38.

    Houston, D. C. Scavenging efficiency of turkey vultures in tropical forest. The Condor 88, 318–323 (1986).

    Article  Google Scholar 

  • 39.

    Sauer, J. et al. The North American breeding bird survey, results and analysis 1966–2015. (2017).

  • 40.

    Hill, J. E., DeVault, T. L., Beasley, J. C., Rhodes, O. E. & Belant, J. L. Effects of vulture exclusion on carrion consumption by facultative scavengers. Ecol. Evol. 8, 2518–2526 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Heinrich, B. Winter foraging at carcasses by three sympatric corvids, with emphasis on recruitment by the raven, Corvus corax. Behav. Ecol. Sociobiol. 23, 141–156 (1988).

    Article  Google Scholar 

  • 42.

    Bellan, S. E., Turnbull, P. C. B., Beyer, W. & Getz, W. M. Effects of experimental exclusion of scavengers from carcasses of anthrax-infected herbivores on bacillus anthracis sporulation, survival, and distribution. Appl. Environ. Microbiol. 79, 3756–3761 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    The IUCN Red List of Threatened Species. IUCN Red List of Threatened Species https://www.iucnredlist.org/en.

  • 44.

    Kiff, L. F. The current status of North American vultures. In Raptors at Risk 175–189 (World Working Group on Birds of Prey/Hancock House, 2000).

  • 45.

    Prasad, A. M., Iverson, L. R., Peters, M. P. & Matthews, S. N. Climate change tree atlas (Northern Research Station, US Forest Service, Delaware, OH, 2014).

    Google Scholar 

  • 46.

    Kiff, L. The current status of North American vultures. in 175–189 (2000).

  • 47.

    Houston, D. C. Competition for food between Neotropical vultures in forest. Ibis 130, 402–417 (1988).

    Article  Google Scholar 

  • 48.

    Gomez, L. G., Houston, D. C., Cotton, P. & Tye, A. The role of greater yellow-headed vultures Cathartes melambrotus as scavengers in neotropical forest. Ibis 136, 193–196 (1994).

    Article  Google Scholar 

  • 49.

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, e1241484 (2014).

  • 50.

    Tomberlin, J. K., Barton, B. T., Lashley, M. A. & Jordan, H. R. Mass mortality events and the role of necrophagous invertebrates. Curr. Opin. Insect Sci. 23, 7–12 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Fey, S. B. et al. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc. Natl. Acad. Sci. 112, 1083–1088 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Wikenros, C., Sand, H., Ahlqvist, P. & Liberg, O. Biomass flow and scavengers use of carcasses after re-colonization of an apex predator. PLoS ONE 8, e77373 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Kočárek, P. Decomposition and Coleoptera succession on exposed carrion of small mammal in Opava, the Czech Republic. Eur. J. Soil Biol. 39, 31–45 (2003).

    Article  Google Scholar 

  • 54.

    Matuszewski, S., Bajerlein, D., Konwerski, S. & Szpila, K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 1: pattern and rate of decomposition. Forensic Sci. Int. 194, 85–93 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Reed, H. B. A study of dog carcass communities in tennessee, with special reference to the insects. Am. Midl. Nat. 59, 213–245 (1958).

    Article  Google Scholar 

  • 56.

    Bauer, J. W., Logan, K. A., Sweanor, L. L. & Boyce, W. M. Scavenging behavior in Puma. Southwest. Nat. 50, 466–471 (2005).

    Article  Google Scholar 

  • 57.

    Burkepile, D. E. et al. Chemically mediated competition between microbes and animals: microbes as consumers in food webs. Ecology 87, 2821–2831 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Janzen, D. H. Why fruits rot, seeds mold, and meat spoils. Am. Nat. 111, 691–713 (1977).

    CAS  Article  Google Scholar 

  • 59.

    DeVault, T. L. & Rhodes, O. E. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. (Warsz.) 47, 185–192 (2002).

    Article  Google Scholar 

  • 60.

    Parker, K. L., Robbins, C. T. & Hanley, T. A. Energy expenditures for locomotion by Mule Deer and Elk. J. Wildl. Manag. 48, 474–488 (1984).

    Article  Google Scholar 

  • 61.

    Crête, M. & Larivière, S. Estimating the costs of locomotion in snow for coyotes. Can. J. Zool. 81, 1808–1814 (2003).

    Article  Google Scholar 

  • 62.

    Droghini, A. & Boutin, S. The calm during the storm: snowfall events decrease the movement rates of grey wolves (Canis lupus). PLoS ONE 13, e0205742 (2018).

  • 63.

    Green, G. I., Mattson, D. J. & Peek, J. M. Spring feeding on ungulate carcasses by grizzly bears in Yellowstone National Park. J. Wildl. Manag. 61, 1040–1055 (1997).

    Article  Google Scholar 

  • 64.

    De Jong, G. D. & Chadwick, J. W. Decomposition and arthropod succession on exposed rabbit carrion during summer at high altitudes in colorado, USA. J. Med. Entomol. 36, 833–845 (1999).

    PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Sun, S.-J. et al. Climate-mediated cooperation promotes niche expansion in burying beetles. Elife 3, e02440 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Krofel, M. Monitoring of facultative avian scavengers on large mammal carcasses in Dinaric forest of Slovenia. Acrocephalus 32, 45–51 (2011).

    Article  Google Scholar 

  • 67.

    DeVault, T. L., Seamans, T. W., Linnell, K. E., Sparks, D. W. & Beasley, J. C. Scavenger removal of bird carcasses at simulated wind turbines: Does carcass type matter?. Ecosphere 8, e01994 (2017).

    Article  Google Scholar 

  • 68.

    Turner, K. L., Conner, L. M. & Beasley, J. C. Effect of mammalian mesopredator exclusion on vertebrate scavenging communities. Sci. Rep. 10, 2644 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Abernethy, E. F., Turner, K. L., Beasley, J. C. & Rhodes, O. E. Scavenging along an ecological interface: utilization of amphibian and reptile carcasses around isolated wetlands. Ecosphere 8, e01989 (2017).

    Article  Google Scholar 

  • 70.

    Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, (2016).

  • 71.

    Ragg, J., Mackintosh, C. & Moller, H. The scavenging behaviour of ferrets (Mustela furo), feral cats (Felis domesticus), possums (Trichosurus vulpecula), hedgehogs (Erinaceus europaeus) and harrier hawks (Circus approximans) on pastoral farmland in New Zealand: Implications for bovine tuberculosis transmission. N. Z. Vet. J. 48, 166–175 (2001).

    Article  Google Scholar 

  • 72.

    Laundré, J. W., Hernández, L. & Altendorf, K. B. Wolves, elk, and bison: reestablishing the” landscape of fear” in Yellowstone National Park, USA. Can. J. Zool. 79, 1401–1409 (2001).

    Article  Google Scholar 

  • 73.

    Ripple, W. J. & Beschta, R. L. Linking wolves to willows via risk-sensitive foraging by ungulates in the northern Yellowstone ecosystem. For. Ecol. Manag. 230, 96–106 (2006).

    Article  Google Scholar 

  • 74.

    Ripple, W. J. & Beschta, R. L. Trophic cascades in Yellowstone: the first 15 years after wolf reintroduction. Biol. Conserv. 145, 205–213 (2012).

    Article  Google Scholar 

  • 75.

    Smith, D. W., Peterson, R. O. & Houston, D. B. Yellowstone after wolves. Bioscience 53, 330–340 (2003).

    Article  Google Scholar 

  • 76.

    White, P. J. & Garrott, R. A. Northern Yellowstone elk after wolf restoration. Wildl. Soc. Bull. 33, 942–955 (2005).

    Article  Google Scholar 

  • 77.

    Clark, P. J. & Evans, F. C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445–453 (1954).

    Article  Google Scholar 

  • 78.

    Cook, R. C., Cook, J. G. & Irwin, L. L. Estimating elk body mass using chest-girth circumference. Wildl. Soc. Bull. 1973-2006 31, 536–543 (2003).

    Google Scholar 

  • 79.

    Craine, J. M., Towne, E. G. & Elmore, A. Intra-annual bison body mass trajectories in a tallgrass prairie. Mammal Res. 60, 263–270 (2015).

    Article  Google Scholar 

  • 80.

    Lott, D. F. & Galland, J. C. Body mass as a factor influencing dominance status in American Bison Cows. J. Mammal. 68, 683–685 (1987).

    Article  Google Scholar 

  • 81.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression. (Sage Publications, 2018).

  • 82.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

  • 83.

    Pan, Y. & Jackson, R. T. Ethnic difference in the relationship between acute inflammation and serum ferritin in US adult males. Epidemiol. Infect. 136, 421–431 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 84.

    Brewer, M. J., Butler, A. & Cooksley, S. L. The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity. Methods Ecol. Evol. 679, 692. https://doi.org/10.1111/2041-210X.12541 (2016).

    Article  Google Scholar 

  • 85.

    Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).

    MathSciNet  Article  Google Scholar 

  • 86.

    Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  • 87.

    Kleiber, C. & Zeileis, A. Applied Econometrics with R (Springer, Berlin, 2008).

    Google Scholar 

  • 88.

    Cameron, A. C. & Trivedi, P. K. Regression-based tests for overdispersion in the Poisson model. J. Econom. 46, 347–364 (1990).

    MathSciNet  Article  Google Scholar 


  • Source: Ecology - nature.com

    The catalyzing potential of J-WAFS seed grants

    Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities