in

First evidence of virus-like particles in the bacterial symbionts of Bryozoa

  • 1.

    Ohmann, B. & Babiuk, L. A. Viral infections in domestic animals as models for studies of viral immunology and pathogenesis. J. Gen. Virol. 66, 1–25 (1986).

    Article  Google Scholar 

  • 2.

    Woolhouse, M., Scott, F., Hudson, Z., Howey, R. & Chase-Topping, M. Human viruses: discovery and emergence. Phil. Trans. R. Soc. B. 367, 2864–2871 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Johnson, C. K. et al. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci. Rep. 5, 14830 (2015).

    ADS  Article  CAS  Google Scholar 

  • 4.

    Glennon, E. E. et al. Domesticated animals as hosts of henipaviruses and filoviruses: a systematic review. Veterinary J. 233, 25–34 (2018).

    Article  Google Scholar 

  • 5.

    Letarov, A. & Kulikov, E. The bacteriophages in human- and animal body-associated microbial communities. J. Appl. Microbiol. 107, 1–13 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Shkoporov, A. N. & Hill, C. Bacteriophages of the human gut: the “known unknown” of the microbiome. Cell Host Microbe 25, 95–209 (2019).

    Article  CAS  Google Scholar 

  • 7.

    Kwok, K. T. T., Nieuwenhuijse, D. F., Phan, M. V. T. & Koopmans, M. P. G. Virus metagenomics in farm animals: a systematic review. Viruses 12, E107 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 8.

    Grasis, J. A. et al. Species-specific viromes in the ancestral holobiont Hydra. PLoS ONE 9, e109952 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 9.

    Bosch, T. C., Grasis, J. A. & Lachnit, T. Microbial ecology in Hydra: Why viruses matter. J. Microbiol. 53, 193–200 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Weynberg, K. D. et al. Coral-associated viral communities show high levels of diversity and host auxiliary functions. PeerJ 5, e4054 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 11.

    Mahmoud, H. & Jose, L. Phage and nucleocytoplasmic large viral sequences dominate coral viromes from the Arabian Gulf. Front. Microbiol. 8, 2063 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    López-Madrigal, S. & Duarte, E. H. Titer regulation in arthropod-Wolbachia symbioses. FEMS Microbiol. Lett. 366, fnz232 (2019).

    PubMed  Article  CAS  Google Scholar 

  • 13.

    Bordenstein, S. R., Marshall, M. L., Fry, A. J., Kim, U. & Wernegreen, J. J. The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog. 2, e43 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Perlmutter, J. I. et al. The phage gene wmk is a candidate for male killing by a bacterial endosymbiont. PLoS Pathog. 15, e1007936 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Johnson, P. T. Viral diseases of marine invertebrates. Helgolander Meeresunters 37, 65–98 (1984).

    Article  Google Scholar 

  • 16.

    Weinbauer, M. G. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28, 127–181 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Munn, C. B. Viruses as pathogens of marine organisms—from bacteria to whales. J. Mar. Biol. Ass. 86, 453–467 (2006).

    Article  Google Scholar 

  • 18.

    Lang, A. S., Rise, M. L., Culley, A. I. & Steward, G. F. RNA viruses in the sea. FEMS Microbiol. Rev. 33, 295–323 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Rosario, K., Schenck, R. O., Harbeitner, R. C., Lawler, S. N. & Breitbart, M. Novel circular single-stranded DNA viruses identified in marine invertebrates reveal high sequence diversity and consistent predicted intrinsic disorder patterns within putative structural proteins. Front. Microbiol. 6, 696 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Reuter, M. Viruslike particles in Gyratrix hermaphroditus (Turbellaria: Rhabdocoela). J. Invertebr. Pathol. 25, 79–95 (1975).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Vijayan, K. K. et al. Polychaete worms—a vector for white spot syndrome virus (WSSV). Dis. Aquat. Org. 63, 107–111 (2005).

    CAS  Article  Google Scholar 

  • 22.

    Nobiron, I. et al. Genome and polypeptides characterization of Tellina virus 1 reveals a fifth genetic cluster in the Birnaviridae family. Virology 371, 350–361 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Crespo-González, C. et al. Virus-like particles in Urastoma cyprinae, a turbellarian parasite of Mytilus galloprovincialis. Dis. Aquat. Organ. 79, 83–86 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Marhaver, K. L., Edwards, R. A. & Rohwer, F. Viral communities associated with healthy and bleaching corals. Environ. Microbiol. 10, 2277–2286 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Claverie, J.-M. et al. Mimivirus and Mimiviridae: giant viruses with an increasing number of potential hosts, including corals and sponges. J. Invertebr. Pathol. 101, 172–180 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Jackson, E. W., Bistolas, K. S. I., Button, J. B. & Hewson, I. Novel circular single-stranded DNA viruses among an asteroid, echinoid and holothurian (Phylum: Echinodermata). PLoS ONE 11, e0166093 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 27.

    Suttle, C. A. Viruses in the sea. Nature 437, 356–361 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Brum, J. R., Schenck, R. O. & Sullivan, M. B. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. The ISME J 7, 1738–1751 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Middelboe, M. & Brussaard, C. Marine viruses: key players in marine ecosystems. Viruses 9, E302 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Vacelet, J. & Gallissian, M.-F. Virus-like particles in the cells of the sponge Verongia cavernicola (Demospongiae, Dictyoceratida) and accompanying tissues changes. J. Invertebr. Pathol. 31, 246–254 (1978).

    Article  Google Scholar 

  • 31.

    Luter, H. M., Whalan, S. & Webster, N. S. Exploring the role of microorganisms in the disease-like syndrome affecting the sponge Lanthella basta. Appl. Environ. Microbiol. 76, 5736–5744 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Pascelli, C., Laffy, P. W., Kupresanin, M., Ravasi, T. & Webster, N. S. Morphological characterization of virus-like particles in coral reef sponges. PeerJ 6, e5625 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 33.

    Lohr, J. E., Chen, F. & Hill, R. T. Genomic analysis of bacteriophage JL001: insights into its interaction with a sponge-associated alpha-Proteobacterium. Appl. Environ. Microbiol. 71, 1598–1609 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Lohr, J., Munn, C. B. & Wilson, W. H. Characterization of a latent virus-like infection of symbiotic zooxanthellae. Appl. Environ. Microbiol. 73, 2976–2981 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Patten, N. L., Harrison, P. L. & Mitchell, J. G. Prevalence of virus-like particles within a staghorn scleractinian coral (Acropora muricata) from the Great Barrier Reef. Coral Reefs 27, 569–580 (2008).

    ADS  Article  Google Scholar 

  • 36.

    van Oppen, M. H., Leong, J.-A. & Gates, R. D. Coral-virus interactions: A double-edged sword?. Symbiosis 47, 1–8 (2009).

    Article  Google Scholar 

  • 37.

    Vega Thurber, R. L. & Correa, A. M. S. Viruses of reef-building scleractinian corals. J. Exp. Mar. Biol. Ecol. 408, 102–113 (2011).

    Article  Google Scholar 

  • 38.

    Leruste, A., Bouvier, T. & Bettarel, Y. Enumerating viruses in coral mucus. Appl. Environ. Microbiol. 78, 6377–6379 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Pollock, F. J. et al. Abundance and morphology of virus-like particles associated with the coral Acropora hyacinthus differ between healthy and white syndrome-infected states. Mar. Ecol. Prog. Ser. 510, 39–43 (2014).

    ADS  Article  Google Scholar 

  • 40.

    Correa, A. M. S. et al. Viral outbreak in corals associated with an in situ bleaching event: atypical herpes-like viruses and a new megavirus infecting Symbiodinium. Front. Microbiol. 7, 127 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Farley, C. A. Viruses and viruslike lesions in marine mollusks. Mar. Fish. Rev. 40, 18–20 (1978).

    Google Scholar 

  • 42.

    Elston, R. A. Bivalve mollusc viruses. World J. Microbiol. Biotechnol. 13, 393–403 (1997).

    Article  Google Scholar 

  • 43.

    Renault, T. & Novoa, B. Viruses infecting bivalve molluscs. Aquat. Living Resour. 17, 397–409 (2004).

    Article  Google Scholar 

  • 44.

    Richards, G. P. et al. Bacteriophages against pathogenic vibrios in Delaware Bay oysters (Crassostrea virginica) during a period of high levels of pathogenic Vibrio parahaemolyticus. Food Environ. Virol. 11, 101–112 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Leigh, B., Karrer, C., Cannon, J. P., Breitbart, M. & Dishaw, L. J. Isolation and characterization of a Shewanella phage–host system from the gut of the tunicate Ciona intestinalis. Viruses 9, E60 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 46.

    Winston, J. E. Feeding in marine bryozoans. In Biology of Bryozoans (eds Woollacott, R. M. & Zimmer, R. L.) 233–271 (Academic Press, London, 1977).

    Google Scholar 

  • 47.

    Winston, J. E. Polypide morphology and feeding behaviour in marine ectoprocts. Bull. Mar. Sci. 28, 1–31 (1978).

    Google Scholar 

  • 48.

    Shunatova, N. N. & Ostrovsky, A. N. Individual autozooidal behaviour and feeding in marine bryozoans. Sarsia 86, 113–142 (2001).

    Article  Google Scholar 

  • 49.

    Shunatova, N. & Ostrovsky, A. Group autozooidal behaviour and chimneys in marine bryozoans. Mar. Biol. 140, 503–518 (2002).

    Article  Google Scholar 

  • 50.

    Schwaha, T. F., Ostrovsky, A. N. & Wanninger, A. Key novelties in the evolution of Bryozoa: evidence from the soft-body morphology. Biol. Rev. 95, 696–729 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Ryland, J. S. Bryozoans (Hutchinson University Library, London, 1970).

    Google Scholar 

  • 52.

    Ryland, J. S. Bryozoa: an introductory overview. In Moostiere (Bryozoa). Denisia Vol. 16 (ed. Woess, E.) 9–22 (Springer, Linz, 2005).

    Google Scholar 

  • 53.

    McKinney, F. K. & Jackson, J. D. C. Bryozoan Evolution (Unwin Hyman, Boston, MA, 1989).

    Google Scholar 

  • 54.

    Nielsen, C. Bryozoa (Ectoprocta: ‘Moss’ animals). eLS 1, 1–6. https://doi.org/10.1002/9780470015902.a0001613.pub2 (2013).

    Article  Google Scholar 

  • 55.

    Lutaud, G. Sur la présence de microorganismes spécifiques dans les glandes vestibulaires et dans l’aviculaire de Palmicellaria skenei (Ellis et Solander) Bryozoaire Chilostome. Cah. Biol. Mar. 6, 181–190 (1965).

    Google Scholar 

  • 56.

    Lutaud, G. La nature des corps funiculaires des cellularines Bryozoaires Chilostomes. Arch. Zool. Exp. Gen. 110, 2–30 (1969).

    Google Scholar 

  • 57.

    Lutaud, G. L’infestation du myoépithélium de l’oesophage par des microorganismes pigmentés et la structure des organes à bactéries du vestibule chez le Bryozoaire Chilostome Palmicellaria skenei (E. et S.) Can. J. Zool. 64, 1842–1851 (1986).

    Google Scholar 

  • 58.

    Woollacott, R. M. & Zimmer, R. L. A simplified placenta-like system for the transport of extraembryonic nutrients during embryogenesis of Bugula neritina (Bryozoa). J. Morphol. 147, 355–377 (1975).

    PubMed  Article  Google Scholar 

  • 59.

    Dyrynda, P. E. J. & King, P. E. Sexual reproduction in Epistomia bursaria (Bryozoa: Cheilostomata), an endozooidal brooder without polypide recycling. J. Zool. 198, 337–352 (1982).

    Article  Google Scholar 

  • 60.

    Moosbrugger, M., Schwaha, T., Walzl, M. G., Obst, M. & Ostrovsky, A. N. The placental analogue and the pattern of sexual reproduction in the cheilostome bryozoan Bicellariella ciliata (Gymnolaemata). Front. Zool. 9, 29 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Mathew, M., Schwaha, T., Ostrovsky, A. N. & Lopanik, N. B. Symbiont-dependent sexual reproduction in marine colonial invertebrate: Morphological and molecular evidence. Mar. Biol. 165, 14 (2018).

    Article  CAS  Google Scholar 

  • 62.

    Karagodina, N. P., Vishnyakov, A. E., Kotenko, O. N., Maltseva, A. L. & Ostrovsky, A. N. Ultrastructural evidence for nutritional relationships between a marine colonial invertebrate (Bryozoa) and its bacterial symbionts. Symbiosis 75, 155–164 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Woollacott, R. M. Association of bacteria with bryozoan larvae. Mar. Biol. 65, 155–158 (1981).

    Article  Google Scholar 

  • 64.

    Zimmer, R. L. & Woollacott, R. M. Mycoplasma-like organisms: occurrence with the larvae and adults of a marine bryozoan. Science 220, 208–210 (1983).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Zimmer, R. L. & Woollacott, R. M. Larval morphology of the bryozoan Watersipora arcuata (Cheilostomata: Ascophora). J. Morphol. 199, 125–150 (1989).

    PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Boyle, P. J., Maki, J. S. & Mitchell, R. Mollicute identified in novel association with aquatic invertebrate. Curr. Microbiol. 15, 85–89 (1987).

    CAS  Article  Google Scholar 

  • 67.

    Lim, G. E. & Haygood, M. G. “Candidatus Endobugula glebosa”, a specific bacterial symbiont of the marine bryozoan Bugula simplex. Appl. Environ. Microbiol. 70, 4921–4929 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Sharp, K. H., Davidson, S. K. & Haygood, M. G. Localization of ‘Candidatus Endobugula sertula’ and the bryostatins throughout the life cycle of the bryozoan Bugula neritina. ISME J. 1, 693–702 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 69.

    Lim-Fong, G. E., Regali, L. A. & Haygood, M. G. Evolutionary relationships of “Candidatus Endobugula” bacterial symbionts and their Bugula bryozoan hosts. Appl. Environ. Microbiol. 74, 3605–3609 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Richardson, K. C., Jarrett, L. & Finke, E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain. Technol. 35, 313–323 (1960).

    CAS  PubMed  Article  Google Scholar 

  • 71.

    Mäntynen, S., Sundberg, L.-R., Oksanen, H. M. & Poranen, M. M. Half a century of research on membrane-containing bacteriophages: bringing new concepts to modern virology. Viruses 11, E76 (2019).

    PubMed  Article  CAS  Google Scholar 

  • 72.

    Cuozzo, S. A., Castellano, P., Sesma, F. J., Vignolo, G. M. & Raya, R. R. Differential roles of the two-component peptides of lactocin 705 in antimicrobial activity. Curr. Microbiol. 46, 180–183 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 73.

    Chibani-Chennoufi, S., Bruttin, A., Dillmann, M. L. & Brüssow, H. Phage-host interaction: An ecological perspective. J. Bacteriol. 186, 3677–3686 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 74.

    Haygood, M. G. & Davidson, S. K. Small-subunit rRNA genes and in situ hybridization with oligonucleotides specific for the bacterial symbionts in the larvae of the bryozoan Bugula neritina and proposal of “Candidatus Endobugula sertula”. Appl. Environ. Microbiol. 63, 4612–4616 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Ostrovsky, A. N., Gordon, D. P. & Lidgard, S. Independent evolution of matrotrophy in the major classes of Bryozoa: Transitions among reproductive patterns and their ecological background. Mar. Ecol. Prog. Ser. 378, 113–124 (2009).

    ADS  Article  Google Scholar 

  • 76.

    Ostrovsky, A. N. Evolution of Sexual Reproduction in Marine Invertebrates: Example of Gymnolaemate Bryozoans (Springer, Dordrecht, Heidelberg, NewYork, London, 2013).

    Google Scholar 

  • 77.

    Ostrovsky, A. N. From incipient to substantial: evolution of placentotrophy in a phylum of aquatic colonial invertebrates. Evolution 67, 1368–1382 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 78.

    Miller, I. J., Vanee, N., Fong, S. S., Lim-Fong, G. E. & Kwan, J. C. Lack of overt genome reduction in the bryostatin-producing bryozoan symbiont “Candidatus Endobugula sertula”. Appl. Environ. Microbiol. 82, 6573–6583 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 79.

    Miller, I. J., Weyna, T. R., Fong, S. S., Lim-Fong, G. E. & Kwan, J. C. Single sample resolution of rare microbial dark matter in a marine invertebrate metagenome. Sci. Rep. 6, 34362 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 80.

    Ostrovsky, A. N. & Porter, J. S. Pattern of occurrence of supraneural coelomopores and intertentacular organs in Gymnolaemata (Bryozoa) and its evolutionary implications. Zoomorphology 130, 1–15 (2011).

    Article  Google Scholar 

  • 81.

    Shikuma, N. J., Pilhofer, M., Weiss, G. L., Hadfield, M. G. & Jensen, G. J. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail–like structures. Science 343, 529–533 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 82.

    Leiman, P. G. et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Nat. Acad. Sci. 106, 4154–4159 (2009).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Taylor, N. M. I., van Raaij, M. J. & Leiman, P. G. Contractile injection systems of bacteriophages and related systems. Mol. Microbiol. 108, 6–15 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 84.

    Lawrence, S. A., Wilson, W. H., Davy, J. E. & Davy, S. K. Latent virus-like infections are present in a diverse range of Symbiodinium spp. (Dinophyta). J. Phycol. 50, 984–997 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 85.

    Ericson, C. F. et al. A contractile injection system stimulates tubeworm metamorphosis by translocating a proteinaceous effector. eLife 8, e46845 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 86.

    Ackermann, H. W. Basic phage electron microscopy. Methods Mol. Biol. 501, 113–126 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 87.

    Moran, N. A., Degnan, P. H., Santos, S. R., Dunbar, H. E. & Ochman, H. The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc. Natl. Acad. Sci. USA 102, 16919–16926 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 88.

    Weldon, S. R. & Oliver, K. M. Diverse bacteriophage roles in an aphid-bacterial defensive mutualism. In Advances in Environmental Microbiology Vol. 2 (ed. Hurst, C. J.) 173–206 (Springer, Berlin, 2016).

    Google Scholar 

  • 89.

    Rohwer, F. & Thurber, R. V. Viruses manipulate the marine environment. Nature 459, 207–212 (2009).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 90.

    Roossinck, M. J. The good viruses: viral mutualistic symbioses. Nat. Rev. Microbiol. 9, 99–108 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 91.

    Sharp, J. H., Winson, M. K. & Porter, J. S. Bryozoan metabolites: an ecological perspective. Nat. Prod. Rep. 24, 659–673 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 92.

    Maltseva, A. L. et al. Novel brominated metabolites from Bryozoa: a functional analysis. Nat. Prod. Res. 31, 1840–1848 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Rock magnetism uncrumples the Himalayas’ complex collision zone

    Scientists discover slimy microbes that may help keep coral reefs healthy